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V. PHYSICALANDMATHEMATICALMODELS

5.1 SINGLE-PHASE FLOW MODELS

In this section, the equations which govern the distribution of the mean quantities are summarized.
These equations are derived from the conservation laws of mass and momentum using time averaging
and are expressed in tensor notation for steady and constant density flow as

(5)

0(UIU_)= 1 aP a (utu----_.)
0Xt PaX, axj

(6)

where Ui and ui are the mean and fluctuating velocities along the Xi direction, respectively, p is the mean
pressure, and the bar is used to denote time-averaged quantities.

As a consequence of the nonlinearity of Equation 6, the averaging process used introduces unknown cor-

relations uiu j which can be made known through the assumption of turbulence modeling.

Three different types of turbulence closures are investigated, namely, the standard k-¢ model, algebraic
second-moment closure (ASM), and differential second-moment closure (DSM).

The k-¢ model is a simple closure based on the gradient transport relations. In this model, the turbulent
fluxes are relal_d to the mean fields through the assumption of an isotropic eddy viscosity and a turbu-
lent Prandtl/Schmidt number as

_.°,u, (7)

The eddy viscosity (Pt) is obtained from the turbulent kinetic energy (k) and its dissipation rate (O using
the relation

=cppk2/_ (8)

In order to close the set of Equations 5 through 7, two additional equations governing the transport of k
and l_are required. These are

pUj axi ax i t,Ok ) ax i ax i
(9)

/ \
E 2a

PUi ax i ax i I,a, )ax i " k ' ax i " k
_=_/ +_t/_- L_ --tpuiu_J_- _-_2_m (10)
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where Ok and o£ areturbulentSchmidt numbers and Cel and C£2 aremodel constants. The constants

used inthismodel have been takenfrom Launder and Spalding(1974")and aregiveninTable5.1-I.

Table 5.1-I.

Values of constants in the k-E mod_l.

0.09 ,. ,.92 10 13

The k-e model is the simplest model which is suitable for recirculating flow calculations. It allows the
characteristic length scale of a wide range of complex flow fields to be determined. The k-¢ model has

been used with success in the calculation of various free shear flows and recirculating flows with and

without swirl (e.g., Rodi, 1980). However, in flows with significant streamline curvature, the isotropic
eddy viscosity assumption may not be able to describe the turbulent diffusion effects adequately. The
axisymmetric form of the turbulent flow equations is given in Appendix A for the k-£ model.

To allow for_ nonisotropicbehavior oft_ Oddy:viscosi_r_d _ account for the effect Of body forces

(e.g.. buoyancy, rotation), the k-e model is refined by introducing ASM. This model is based on a simpli-
fication of the Reynolds stress transport equation which relates the individual stresses to mean velocity
gradient, turbulent kinetic energy, and its dissipation rate by way of algebraic expressions. The ASM
model adopted here is based on Rodi's hypothesis (Rodi, 1976) which approximates the convection and

diffusion Iransport of turbulent stresses in terms of the transport of k.

The result can be summarized as

aij = (11)

where

OU __ aU.
pulu k .Y..T..L_ PUiU_ - - I

Pij= , OX k . OX k
(12)

Pk =21Pii "_" (13)

C1 and C2 are model constants and aij is the nondimensional measure of anisotropy and is given by the
following expression

aij= k 3
(14)

* References for Section V are listed at the end of the section.
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Since the quantifies k and ¢ are present in these equations, their transport equations also have to be
solved. These are determined by

ak a ( k--ak )
m = m/Ckp- uju, _|- Pk - Pe

pUj oxj 0x i _, _ ax.)
(15)

PUj_j = c_pkuun_:' _ +C_'kPk-C':2P k
(16)

Ck, C_, Cel, and C--¢.2are all model constants and are given in Table 5.1-II.

Table 5.1-II.
Values of constant'_ in the ASM and DSM closures.

Cel 1.44
Ce2 1.92
C¢ 0.18
Ck 0.22
C1 1.8
C2 0.6
Clw 0.05
C2w 0.006

The k-¢ and ASM models assume that the local state of turbulence can be characterized by one velocity
scale. In order to allow for the different development of thc various Reynolds stresses representing vari-
ous velocity scales in complex flows and to account properly for their transport, models which employ
transport equations for the individual stresses must be applied.

The Reynolds stress equations can be written in tensor notation form as

0
PUk _uiuj- d,i = Pij + *ii- Peij

BX k
(17)

Here, Pij is the production of Reynolds stress uiuj, eij represents viscous dissipation, ¢ij controls the redis-
tribution of turbulence energy among the normal stresses through the interaction of pressure and strain,

and dij stands for turbulence diffusion. Since Pij is exact, it does not need modeling. However, closure

assumptions are required for dij, ¢ij, and ¢ij- The assumption of local isotropy allows the dissipation ten-
sor to be approximated by

¢ij= 28,j ¢ (18)

where ¢ is the turbulence energy dissipation rate. The diffusion term is approximatcx:l by the gradient-
diffusion model of Daly and Hariow (1970)
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diJ--- CkpUkUn _ aX. ) (19)

where Ck is a model constant, and k 1/2 uiu i is the turbulent kinetic energy. _= T_ pressure redistribu-

tion term (_j) is modeled in three parts: *ijl resulting from purely turbulence interactions known as "re-

tum-to-isotropy," _ij2 involving interactions between the mean strain rate and turbulence known as

"rapid" part, and _jw representing the effects of rigid boundaries on both _ijl and _j2. The presence of a
rigid wall affects the flow field near that region by impeding the transfer of turbulent energy from the

streamwise direction to that normal to the wall, and as a result reduces the relative magnitude of the

shear stress. In the present study, Rotta's linear model (Rotta, 1951) for the turbulence part of_ij is

adopted

_,j, = -C,p t__'(%u i- 2 8_ik / (20)
k_, 3 ,/

The simple linear form for (_ijl is widely accepted and used dispite the fact that the actual "return-to-
isotropy" process is highly nonlinear (Bradshaw, 1968). More sophisticated nonlinear forms, such as

Lumely and Khayeh-Nouri's proposal (1974) have been suggested, but these have shown no significant

improvement over Rotta's proposal. The rapid part is approximated using the simple model suggested

by Naot et al. (1970), known as the isotropization production tiP) model

_ij2 = -C2CPij - _ _)ijP k )
(21)

A more sophisticated version of _ij2 is the linear quasi-isotropic (QI) model (Launder et al, 1975)

_i'2--_'-'_ J_ ij--2_ijPk) _ ii 55 J Laxj _x i

(22)

where

Dij=-_3CUillkOUk +UjUk OUklc_Xj
(23)

This model includes both the symmetric and antisymmetric mean strain effects on redistribution model-

ing.

The effects of solid boundaries on pressure redistribution term are included using the wall correction

proposed by Launder et al. (1975), or

k,sr*,_=_/C,wex.L k u_ui-3a'iPk +%w(V'i
(24)

where Xn is the normal distance from the wall and the model constants Cl w and C2w are specified in

Table 5.1-11. The modeled Reynolds stress transport equations in axisymmetric coordinates (x, r) are

given in Appendix B.
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5.2 TWO-PHASE FLOW MODELS

The mathematical formulations for the particle/flow problems consist of Eulerian conservation equations

to the continuous gas phase and Lagrangian equations to discrete particle motion. The continuous gas

phase is coupled to the discrete phase by incorporating additional source term.

5.2.1 Dis__r_ Phase

The model employed for the dispersed phase calculations is based on the stoichastic Lagrangian formula-
tion reported by Gosman and Ioannides (1983). In this approach, effects of the gas phase turbulent fluc-
tuations on particle drag and dispersion are considered. Because of the large number of actual particles
in the spray, the dispersed phase is characterized by individual spherical particles, termed "computa-
tional particles." Each of these computational particles represents a group of particles all having the same
initial size, velocity, and temperature. The commonly adopted equation of motion of n-th computational

particle in dilute spray, assuming large particle-to-fluid density ratio, is given by

(25)

where Ui and Vi are the ith components of instantaneous gas and particle velocity, respectively, g is the

gravitational acceleration, and _d is the dynamic relaxation time of particle defined as

4Dppp

_d = 3C_U_Vn I

(26)

Here, Dp and 9p are pariicle diameter and density, respectively, CD is the drag coefficient, p is the fluid

density

C D = (24/Re)(1 + 0.1315[Re]0"82"0"05w), 0.01 < Re < 20 (27)

C D -- (24/Re)(1 + 0.1935[Re]0"6305), 20 < Re < 260 (28)

where w = logl0Re and the particle Reynolds number (Re) is defined as

f_U- V nIDp
Re = (29)

where _ is the fluid density. Integration of acceleration from Equation 25 results in the velocity compo-
nents of the particle. The position of each particle group can be found by integrating the equation

=V n (30)
dt

where Xi is the particle position vector. A particle is assumed to interact with an eddy for a characteristic

time z. The interaction time is determined by the minimum of either the residence time (tr) which is the

time required for a particle to cross an eddy or the eddy lifetime (re) which is the time that particle re-

mains within the eddy during the whole of its lifetime. The time scales are estimated with the assump-
tion that the characteristic size of an eddy is the dissipation length scale Le, given by
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te and tr are then estimated as

(31)

te = Le / (1_'k13) (32)

t,= L,/_U-V n]

hence, ..........

(33)

= mi-n(te, tr) ................................... (34)

The velocity fluctuations associated with each eddy are found by making a random selection from the
probability density function of velocity. The turbulence is assumed to be anisotropic ff _ DSM _el b
applied with fluctuating components having a Gaussian distributiQn. The s_n_iprd de_tion _f_or
distribution is taken to be its respective root mean square (rms) velocity fluctuation obtained from the
Reynolds equations. The distribution is randomly sampled when a particle enters the gas velocity field _ '
obtain the instantaneous gas velocity. However, in the k-e model, the rrns velocity flti_tion is chosen
randomly from an assumed isotropic Gaussian distribution with mean square deviation 2/3k.

5'2.2 Continuous Pha_ i _

For high Reynolds number turbulent flow, neglecting the volume fraction of the particle phase, the time
averaged mass and momentum equations can be expressed in Cartesian tensor notation as

_x-_(pUi) = 0 (35)

a aP a (pu--_.)_s_
a_j (putuj) = -_ axj

(36)

where Spi is the interracial drag force resulting from interaction between particles and the carrier phase.

The interfacial drag force per unit volume is given by

E-3 "Co--Plu-v°iu,-vt)
n 4 Dp I Ix

(37)

where an is the volume fraction of particle group n that passes through the computational cell and is
given by

(38)

Here, N is the number of particles represented by the trajectory n, and AV is the computational cell vol-
time,
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Twodifferenttypesofturbulenceclosuresareinvestigated.Oneisasimpleclosurebasedonthegradient
transportrelation (Equation 7). Two additional partial differential equations are also needed to obtain k

and e (Mostafa and Mongia, 1988). These are

ak /) IJ. ak _ au
(39)

axjL,.)ax 
(40)

where

S_ _-T.2kanPrl-_ 1
,, t, _L+_d)

(41)

K n _, I_L +I¢d J

(42)

Fn and ZL are the interphase friction coefficient and the continuous phase Lagrangian time scale, respec-

tively, given by

F== v.l
4 D_ # '

(43)

z L = 0.35 k (44)
E

Another type of closure is based on solving additional transport equations for uiuj without invoking the

gradient transport assumption. The Reynolds stress equation suggested for two-phase flow can be writ-
ten in tensor notation as

(45)

where Pij, ¢ij, and dij represent production, dissipation, and diffusion of Reynolds stresses (Equations 12,
18, and 19). Pij is an extra term that accounts for the generation of turbulence due to the particles motion.

The model for Pij tensor is suggested as (Lopez et al, 1990)

.. [4/50 0]--
Pij=/ 0 3/5 0[Pi

L 0 0 3/5J

(46)

where Pi is the turbulence production due to the particles work as they move through the continuous
phase and is given by

n _d

(47)
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where(:3 = 0.02 is a model constant indicating only 2% of the turbulence created by particles is trans-
ferred into the large eddies ......

The pressure redistribution, Otj, is modeled in three parts. These are: _ijl resulting from purely turbu-

lence interaclion, _ij2 involving interactions between the mean strain rate and turbulence, and d)ip, as

suggested by Lopez et al (1990), representing the effects of particles on both _ijl and _ij2-

*ij "" ClPg-k (u_-2' 3 8ijk) "C2 (Pij -32"8ijPk)" C2 (P"ij"3_ _ijPk ) (48)

The additional unknown, ¢, is determined by the following equation

puj axj axtL e ax.)--=--/c,p-.,u. (49)

=
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53 MATHEMATICAL FORMULATION

The calculation procedure used in this study is based on the primitive variable formulation of the Navier-

Stokes equations. The conservation equations are discretized using a control-volume approach. The
couplingbetween thecontinuityand momentum equationsishandled viatheSIMPLER algorithm.The

procedureisdescribedindetailinPatankar(1980),Varejao(1979),and Karkietal(1988).

The conservation equations for all dependent variables may be expressed in the following general form

aY ax_ ax/ oY_ 0Y!
(50)

where _ is the particular variable of interest, F is the diffusion coefficient, and S is the source term.

53.1 Discretization

Equation 50 can be written as

aj+aj = -fy s (51)

where Jx and Jy are the total (convection and diffusion) fluxes defined by

lx =pL - (52a)
ax

jy =oV_ - F _-_- (52b)
aY

The integration of Equation 51 over the control volume surrounding the grid point P (Figure 5.3.1-1")

gives

(Jx,e - Jx,w) AY + (Jy,n - Jy,s) AX = SAX AY (53)

A discretization scheme is needed to relate the flux at each control-volume face to the values of the de-

pendent variable at the neighboring grid points. The results presented in this report have been obtained
using the power-law differencing scheme and flux-spline scheme. A brief description of these schemes is
presented next.

_.3.2 Pgwcr-Law Differenciniz Scheme

This scheme is based on a curve fit to the exact solution of the one-dimensional convection-diffusion

equation without a source. Since this formulation is based on a purely one-dimensional flux balance, it
leads to significant numerical errors in the presence either of strong source terms, or of crossflow gradi-
ents in multidimensional flows coupled with the grid-to-flow skewness. The flux-spline scheme includes
these effects in the interpolation profile between the grid points.

* Figures for Section V appear at the end of each subsecti0n. The figure number identifies the subsection
in which the figure is discussed.
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5.33 Hux-Spline Differencing Schgrr_

The flux-spline scheme considered here is based on the assumption that within a control volume the total

flux in a given direction varies linearly along the coordinate direction. For example, the flux in the x-di-
rection for the control volume around the grid point P (Figure 5.3.3-1) is given by ...........

jx =pLI#. I" 0O = jx w +/Jx,e - Jx,wl x
0X ' _ AX #

(54)

The integration of Equation 54 leads to the following expression for the variation of # in the x-direction

i - a + b exp (pUX/F) + c (55)

where the constants a, b, and c for a given control volume can be expressed in terms of ix,e, Jx,w, and 41p.

Equation 55 gives the variation of _ within a control volume. For two adjacent control volumes the @-

profiles are such that they imply the same total flux at the common interface. In addition, these profiles
must also give a unique value of _ at the common interface. This continuity-of-_ (spline continuity) con-
dition for the interface between the grid points W and P can be expressed as

Jx,w = (Dx, w_W - Ex,w_P) + Bx, w (Jx,w - Jx,e) + Cx,w (Jx,w - Jx,ww) (56)

Here, the expression (Dx, w_W - Ex,w_p) is identical to that obtained from the lower-order exponential

scheme (e.g., Patankar, 1980) which is based on the assumption that the total flux is uniform within a con-

trol volume. The extra terms involving Bx and Cx result from the linear variation of flux. For ease of pre-
sentation, Equation 56 is rewritten as

Jx,w = (Dx, w_W - Ex,w_P) + Jx,w (57)

It should be noted that additional terms such as Jx,w involve the difference in flux values at adjacent faces
of the control volume. That there is a difference in flux indicates the presence of a source term and/or
multidimensionality (a change of flux in one direction is felt as a source term in another direction).

Similar expressions can also be derived for fluxes in other coordinate directions. Substituting these ex-
pressions in Equation 53 and utilizing the discrete form of the continuity equation, the following dis-
cretization equation for _ is obtained

ap_p =Yant_nb+ b+S (58)

The values of the influence coefficients anb are identical to the coefficients obtained from the exponential

scheme. The contribution of the flux-spline formulation is contained in the term S, which is given

 ix,w-ix,e)"Y+<iy,s-iy,n),,x (59)

A two-dimensional situation is governed by three field variables: _, Jx, and Jy. The three sets of equa-
tions that determine these variables are

(1) the conservation equation for
(2) the spline-continuity condition in the x-direction
(3) the spline-continuity condition in the y-direction
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Thesolutionof theseequationsisobtainedinaniterativemanner.In the beginning, Jx and Jy are set

equal to zero, then the conservation equation for _ reduces to the lower-order formulation and can be eas-

fly solved. The solution leads to new estimates for the fluxes Jx and Jy from which new Jx and Jy can be

calculated. The 4_.oquation is now solved with the flux-spline contribution to the source term. This pro-
cess is repeated until convergence is achieved.
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VI. MODELVALIDATION

Thissectionpresentstheresultsof thecomparisonsof the various models for single-phase and two-phase
turbulent recirculating flows. All the experimental data have been fully presented and discussed in
Chapter W. Predictions obtained with each of the turbulence models are discussed and compared with
experimental data. The goals of this study require a careful selection of the test cases. They have to pro-
vide reliable mean flow and turbulence data in the recirculation and recovery regions. A detailed specifi-

cation of the flow parameters in the upstream region is also essential since these are used as inlet condi-
tions to start the computations. The test problems used range from simple flows to more complex flows

to encompass the range of complexities involved in combustor flows. These are

• single round jet
• single annular jet
• single swirling annular jet
• coaxial jets
• coaxial jets with swirling annular flow
• airblast injector

All data sets meet the criteria for acceptable measurements in terms of adequate experimental facility, ap-
propriate instrumentation, and agreement with generally accepted flow trends.

6.1 SINGLE ROUND JET

This section presents the comparison of computational results with experimental data. Both the confined
and unconfined configurations with and without the presence of glass beads are investigated. Bench-
mark quality data were obtained by using a two-component phase/Doppler technique. The theoretical
approach is based on a stochastic Lagrangian treatment for the discrete phase combined with an Eulerian
description of the fluid field and using the k-Eor differential second-moment (DSM) closure.

6.1.1 Unconfined Single Round |¢t

The case of round jet flow configuration was selected for model validation. The glass bead injector (D =

25.3 mm i.d.) with no inlet swirl was directed vertically downward within a 457 mm 2 wire mesh screen.

The sketch of the test section is shown in Figure 6.1.1-1". Data were obtained at seven axial stations 15, 25,

35, 50, 75, 150, and 300 mm from the exit plane of the injector. In addition, measurements were made
close to the exit plane of the rejector to provide initial conditions (Table 6.1-I).

The carrier phase governing equations are solved numerically using the marching finite-difference solu-

tion procedure (Spalding, 1978 ÷ ). The present calculations were obtained using a fine grid with 100
cross-stream grid points and marching step sizes limited by 3% of the current radial grid width or an en-
trainment increase of 3%, whichever is smaller. The ordinary differential equations governing particle
motion are solved using a second-order finite difference algorithm. Ten thousand particles are used for
the stochastic (ST) treatment, whereas 200 particles are computed when the deterministic (DT) method is
compared with the ST.

The calculations start from the first experimental location (1 mm from the nozzle exit) where measured

mean and root mean square (rms) velocity profiles for both gas and particles are available. The inlet pro-
file for turbulent kinetic energy dissipation rate is obtained from the measured turbulent kinetic energy,
turbulent shear stress, and axial velocity gradient.

* Figures for Section VI appear at the end of each subsection. The figure number identifies the subsection
in which the figure is discussed.
References for Section VI are listed at the end of the section.
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Table 6.1-I.

E.xperimental flow conditions at 0.04D downstream of pipe exit.*

Parame[er
Particle-laden _t

Gas-phase (air)

Centerline velocity, Uz,0, m/s

Density,11,kg/m3
Mass flow rate ml, kg/s

Reynolds number Re = 4ml/pmiD

Particle-laden (glass beads)

Centerline velocity, Vz,0, m/s

Density, r2, kg/m 3

Mass flow rate m2, kg/s

Ratio to particle-to-gas mass flow rate, LR

4.74 4.70 4.20

1.178 1.178 1.178

0.0021 0.0021 0.0021

5712 5712 5712

4.41 3.39

2500.0 2500.0

0.O0042 0.0021
0.2 1.0

* D = 0.0253.

Predictions of a single-phase fluid flow field are first compared with data. The performance of the turbu-
lence model in the jet developing region and the effect of the inlet dissipation rate on predicted airflow

field are assessed. Both the standard k-¢ and its modified version (Spalding, 1978) for round jet are err_
ployed. In the modified k-¢ model, the effect of the centerline velocity gradient on _ and c-e.2is given by

cp = 0.09 - O.04fl (60)

Cg2 = 1.92 - 0.0067fl (61)

where

(62)

Uc and Uoo are the axial velocities of the fluid at the jet centerline and the ambient stream, respectively,

and R is the local jet width. This modification allows the atainment of the correct spreading rate of a self-
similar round jet.

Figures 6.1.1-2 and 6.1.1-3 relate to the measurements of a single-phase jet and present comparisons with
calculations using both k-g models. The results are plotted in a dimensionless form versus r/ro, where ro

is the radius of the nozzle. This way the jet spreading can be seen from the mean axial velocity profiles.

The mean axial gas velocities are normalized by the centefline velocity at the inlet of the nozzle, Uz,o, so
that the jet centerline velocity decay can be illustrated in the same figure. All other quantities are normal-
ized by the local mean centefline velocity. Figure 6.1.1-2 presents mean axial velocity, turbulent kinetic

energy (k), and shear stress, while Figure 6.1.1-3 shows the three normal stresses and k. The gas rms ve-
locities were calculated using isotropic assumption.

Both models yield good overall agreement with measurements close to the nozzle exit, but for the region
downstream, the standard model performs better. In the first region, the decay of the centerline velocity
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is very small, the_fofe, the two sets of model constants are quite the _ame. When the axial Vei_ity

started to decay substantially (at about Z/D = 5) cl.t and cE2 of the modified model decrease to values that

give the observed spreading rate for self-similar round jets. For instance, at Z/D = 7, c_t reduces to a
value of 0.064, whereas co2 becomes 1.87. These low values decreased the turbulent diffusion and, hence,

the decay of the centerline velocity. The modified model also underpredicted the level of turbulence en-
ergy. The reason may be attributed to the inlet dissipation rate. Therefore, calculations were made with
the standard model, but with two inlet dissipation levels, as given by eo and 0.5Co where eo is the dissi-

pation reference conditions obtained from the measured profiles of mean velocity, turbulent kinetic en-
ergy, and shear stress at 1 mm downstream of the nozzle exit. As seen from Figure 6.1.1-4, halving the

inlet dissipation rate improves the predictions of the kinetic energy of turbulence.

The comparison of two versions of the k-e model indicates that the results of the standard model agree
better with experimental data, especially for the mean axial velocity. Therefore, this model was extended
for two-phase flow calculations.

For particle-laden jets, two mass loading ratios (LR), defined as the ratio of particle-to-gas mass flow rate
at the inlet plane, LR = 0.2 and 1.0, were considered. To distinguish between the effects of mean and fluc-
tuating gas velocity in particle transport, predictions using ST and DT treatments are compared with the
measured data. The main difference between the two treatments is that the first considers the effect of

gas turbulence on particle motion, whereas the second completely ignores it.

Figure 6.1.1-5 shows the measured and predicted (ST treatment) distributions of mean centerline veloci-
ties and particle number density normalized by their corresponding values at the nozzle exit. Because of
the slow decay of the particle mean velocity, there is a momentum transfer from the dispersed phase to
the gas which causes an increase in the latter velocity compared with the corresponding single-phase val-

ues. This change in the gas-flow properties could also be attributed to the gas turbulence attenuation
caused by particles. Gas turbulence attenuation causes a reduction in the jet spreading rate that results in
less decay of the gas centerline velocity. Figure 6.1.1-5 (a) shows a progressive increase in the gas center-
line velocity with the particle loading ratio LR, which might be explained by the fact that both the mo-
mentum transfer and turbulence modulation are proportional to LR. It can be seen from Figure 6.1.1-5 0a)
that the particle number density is decaying much faster than the particle velocity. This means that the
spreading of the dispersed phase dilutes the particle Concentration but does not necessarily decelerate the
particles.

Figures 6.1.1-6, 6.1,1-7, and 6.1,1-8 correspond to the measurements of a particle-laden jet with LR = 0.2
and indicate the extent to which the models described allow realistic calculations. Figure 6.1.1-6 presents
the mean velocities of both phases, whereas Figures 6.1.1-7 and 6.1.1-8 show the rms values for the parti-
cles and gas and the shear stress of the latter. In these calculations, the turbulence model presented for
two-phase flows was used. It can be seen from Figure 6.1.1-6 that both ST and DT treatments yield nearly
the same results for gas quantities. However, for particle quantities the ST provides good predictions
compared with the experimental data, whereas the DT performs quite poorly for the particle flow proper-
ties. According to the latter, a particle moves radially due to its initial mean radial velocity and/or the
mean radial gas velocity, both of which are very small compared with the axial component. This might
explain the narrow distribution of particle mean axial velocity and number density predicted by the DT.

Figure 6.1.1-7 shows comparisons between predicted and measured values of gas turbulence kinetic en-
ergy and shear stress. It also presents the rms axial gas velocity and its corresponding value for the parti-
cles. If Figure 6.1.1-7 is compared with Figure 6.1.1-2, some reduction in the gas kinetic energy of turbu-
lence caused by the particles could be observed. This phenomenon is more pronounced at LR = 1.0 and
will be discussed below in connection with the results of that case. In Figure 6.1.1-8 the comparisons are
made for the radial and azimuthal rms velocities of both phases. It is seen that the ST predictions of rms

particle velocities are in very good agreement with the data; Vz2 is somewhat underpredicted near the jet

centerline and overpredicted at the outer boundary. This is in agreement with the calculations of Shuen
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et al (1983) and Bulzan et al (1987) who studied particIe-laden jets under somewhat different flow condi-
tions.

Figures 6.1.I-9, 6.1.1-10, and 6.1.1-11 relate to the measurements of particle-laden jets at LR = 1.0 and pre-
sent comparison with calculations. Figure 6.1.1-9 shows mean axial velocity values for both phases and
particle number density, and Figures 6.1.1-I0 and 6.1.1-11 show the Reynolds stresses. Itcan be seen from
these figures that the DT is inferior to the ST in predicting particle properties, the same behavior as ob-
served at LR = 0.2, which could be attributed to the same physical reasonings discussed in connection
with the results of that case.

By comparing Figure 6.1.1-9 with Figure 6.1.1-2, two effects of the particles on the gas mean axial velocity
can be observed. First, the mean axial velocity profile at the inlet plane is flatter than the single-phase
profile. This is due to the inlet profiles, which correspond to a fully developed pipe flow; the injection
tube diameter-to-length ratio was equal to 65.2. At this condition, the particles are leading the fluid near
the injector wail region and thus transfer momentum to the gas, which causes the flattening effect. Sec-
ond, the mean axial gas velocity downstream of the injector is higher than the single-phase value. For in-
stance, at z/D = 12.45, an increase of about 20% of the inlet single-phase velocity is caused by the pres-

ence of the particles. This phenomenon can be attributed to two effects (Mostafa and Elghobashi, 1985).
One effect is the momentum transfer from the particles to the air, since particle velocity becomes greater
than gas velocity after a short distance downstream from the injector. The other effect is the modulation
of the gas turbulence caused by the particles.

To see how the particles modulate the turbulence structure, the distributions of turbulence kinetic energy
and shear stress that are shown in Figure 6.1.1-10 can be compared with the corresponding quantities of
single-phase values illustrated in Figure 6.1.1-3. At z/D = 12.45, local turbulence intensity is reduced
from 20% to 12% at the centerline, which corresponds to a reduction of about 40% of the single-phase
value. This turbulence modulation is caused mainly by the fluctuating relative velocity between the par-

tides and the carrier phase. Particles generally cause a reduction in the gas turbulence and an increase in
the dissipation rate of that energy. This turbulence attenuation reaches its maximum value at a certain
mass loading ratio, when the particle relaxation time becomes very large compared with the gas La-
grangian time scale. The performance of the turbulence model for two-phase flows, which considers this
physical phenomenon, is very good compared with the data in Figures 6.1.1-10 and 6.1.1-11.

Figure 6.1.1-12 corresponds to measurements of the gas kinetic energy and shear stress at the two load-
ings and shows the predictions with the single-phase k-e model and its version for two-phase flows
(Mostafa and Mongia, 1987). In the latter, the turbulence modulation is simulated by introducing extra
terms in the turbulence kinetic energy and its dissipation rate equations. Figure 6.1.1-12 shows that the
single-phase model does not predict the turbulence modulation caused by the particles in the two cases.
However, the two-phase flow model yields fairly good agreement with the data. This result confirms
previous findings that the interaction between the gas and particles is indeed due to both relative mean
and fluctuating motion between the two phases, and in some cases, the turbulence modulation caused by
the particles becomes equally important to the particle dispersion due to gas turbulence.
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Figure 6.1.1-1. Test fadlity: unconfined injector only.
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6.1.2 Confined Single Round let

In this section, a numerical study of a confined flow condition is presented. The purpose of this study is

to assess the performance of the second-moment closure for confined axisymmetric single-phase and par-
tide-laden flows. The spray model is based on the stochastic-Lagrangian approach. A higher order nu-
merical scheme is employed in the continuous phase. The computational results are compared with de-
tailed experimental data obtained using a two-component phase Doppler technique. A sketch of the test
section is shown in Figure 6.1.2-1. The flow conditions used for the cases considered here are given in
Table 6.1-II.

The set of governing partial differential equations applied for nonswifling continuous (carrier) phase flow
consists of equations for continuity, axial (x) and radial (r) momenta, e, and four Reynolds stress compo-
nents. The finite volume approach (Patankar, 1980) is used to reduce the continuous equations to a set of
coupled discrete equations. The numerical solutions are obtained using the fiux-spline differencing
scheme, designated FSDS (Varejao, 1979). In this scheme, the total flux is assumed to vary linearly within
a computational cell (control volume). This assumption leads to a scheme in which the discretization co-
efficients are identical to those from the exponential scheme (Patankar, 1980) but there is an additional
source which involves the differences in fluxes at adjacent faces of a cell. The presence of this source term

enables the flux-spline scheme to respond to the presence of sources and/or multidimensionality of the
flow.

The elliptic nature of transfer equations requires that boundary conditions be specified on the four sides
of the solution domain. Four kinds of boundaries need consideration: inlet, axis of symmetry, wall, and
the outlet. At the inner boundary, which is located at the first measurement plane (x = 4 ram), the mea-

sured profiles of U, V, W, u2, v 2, w 2, and uv are applied. The inlet dissipation rate is prescribed based on

the assumption of constant length scale and the turbulent kinetic energy, namely

, .K (63)
0.2 R3

where R3 = 76 ram is the pipe radius. The macrolength scale of 0.2 R3 was estimated through the sensi-

tivity analysis.

Table 6.1-II.

Confined single iet experimental flow condition_.

Continuous phase
Medium

Density, r
Inner jet mass flow rate, ml

Dilute jet mass flow rate, m2

Averaged velocity of inner jet, Uo

Discrete phase
Medium

Density, rp

Beads diameter, Dp
Centerline velocity
Centerline beads rate
Mass flow rate

Mass loading beads to air, LR

air

1.17 (Kg/m 3)

0.0021 (Kg/s)

0.0272 (kg/s)
3.935 (m/s)

glass beads

2500 (kg/m 3)
105 (mm)

4.2 (m/s)
90 (1/s)

0.00193 (kg/s)
0.925
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At theaxisofsymmetry,theradialvelocity,shearstresses,and radial gradients of other variables are set

to zero. All streamwide gradients are presumed zero in the exit plane of the calculation domain, except
for axial velocity, which needs to be corrected to satisfy integral mass balance. The conventional loga-
rithmic law, which is based on the local equilibrium assumption, is applied to determine the wall shear

sU'ess component. The shear stress is then used as boundary condition for U momentum and uv equa-
tions. The boundary conditions for normal stresses are imposed through the modifications of their pro-
duction terms using the new calculated wall shear stress value.

The coupled equations and boundary conditions are solved numerically in a sequential manner using the
staggered grids for velocities and shear stresses. The main advantage of staggering the location of
stresses is to enhance the numerical stability, a result of high coupling between the shear stresses and re-
lated mean strains. The iteration sequence employs the SIMPLER algorithm (Patankar, 1980) to handle

the coupling between the continuity and momentum equations. The algebraic equations are solved using
a line-by-line tridiagonal matrix algorithm (TDMA_.

The ordinary differential equations descn_bing the dispersed phase are solved using forward nurnerical_
integration. The calculations start from the first measurement plane (x = 4 mm) where the mean and

fluctuation velocity profiles of particles and their rates of injection are available. At the wall, particles are
assumed to bounce back with an angle of reflection equal to the angle of incidence ...............

Numerical iterations are performed over the continuous and dispersed phases until the absolute sums of
the normalized mass and momentum of the carrier phase at all internal grid points and the change of the
particle source terms are less than 10-5 .

The predicted mean and turbulence quantities obtained for a single-phase confined round jet are first
compared with the experimental data. The results presented here were obtained using a 61 x 57 (x - r)
grid (Figure 6.1.2-2). The x and r grid coordinates are also shown in Table 6.l-III. A finer grid spacing is
assigned near the inlet, centefline, and in shear layer. The computational domain extends from the first
experimental location (x = 4 mm) to 450 mm downstream of the jet exit. Since the measured flow does
not show any x dependence at x >200 mm, the specified condition a/0x = 0 at the exit plane of the calcula-
tion domain is realistic. Since the computational results did not change using a finer grid, it is therefore
assumed that the predicted results are grid independent.
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Table6.1-III.
Confined single jet experimental flow conditions.

STREAHWISE COORDINATES OF THE GRID

I DX X XU

1 O.O00E+O0 O.O00E+O0

2 7.750E-04 7.750E-04

3 1.625E-03 2.400E-03

4 2.050E-03 4.450E-03

5 2.500E-03 6.950E-03

6 2.700E-03 9.650E-03

7 2.938E-03 1.259E-02

8 3.313E-03 1.590E-02

9 3.888E-03 1.979E-02

10 4.588E-03 2.438E-02

11 5.250E-03 2.963E-02

12 5.775E-03 3.540E-02

13 6.238E-03 4.164E-02

14 6.713E-03 4.835E-02

15 7.063E-03 5.541E-02

16 7.200E-03 6.261E-02

17 7.250E-03 6.986E-02

18 7.288E-03 7.715E-02

19 7.300E-03 8.445E-02

20 7.300E-03 9.175E-02

21 7.288E-03 9.904E-02

22 7.275E-03 1.063E-01

23 7.288E-03 1.136E-01

24 7.300E-03 t.209E-01

25 7.300E-03 1.282E-01

26 7.300E-03 1.355E-01

27 7.300E-03 1.428E-01

28 7.300E-03 1.501E-01

29 7.300E-03 1.574E-01

30 7.300E-03 1.647E-01

31 7.300E-03 1.720E-01

32 7.300E-03 1.793E-01

33 7.300E-03 1.866E-01

34 7.300E-03 1.939E-01

35 7.300E-03 2.012E-01

36 7.300E-03 2.085E-01

37 7.300E-03 2.158E-01

38 7.300E-03 2.231E-01

39 7.200E-03 2.303E-01

40 7.200E-03 2.375E-01

41 7.400E-03 2.449E-01

42 7.400E-03 2.523E-01

43 7.325E-03 2.596E-01

44 7.325E-03 2.670E-01

45 7.275E-03 2.742E-01

46 7.275E-03 2.815E-01

47 7.300E-03 2.888E-01

48 7.450E-03 2.963E-01

O.O00E+O0

O.O00E+O0

1.550E-03

3.250E-03

5.650E-03

8.250E-03

1.105E-02

1.413E-02

1.768E-02

2.190E-02

2.685E-02

3.240E-02

3.840E-02

4.688E-02

5.183E-02

5.900E-02

6.623E-02

7.350E-02

8.080E-02

8.810E-02

9.540E-02

1.027E-01

1.100E-01

1.173E-01

1.246E-01

1 319E-01

1 392E-01

1 465E-01

1 538E-01

1 611E-01

1 684E-01

1 757E-01

1.830E-01

1.903E-01

1.976E-01

2.049E-01

2.122E-01

2.195E-01

2.268E-01

2.339E-01

2.412E-01

2.487E-01

2.560E-01

2.633E-01

2.706E-01

2.779E-01

2.852E-01

2.925E-01 PNTr 1 0F3

TEg2-899
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Table 6.1-III (cont).

49 7.775E-03 3.060E-01 3.001E-01

50 7.975E-03 3.120E-01 5.080E-0I

51 8.500E-03 3.205E-01 3.160E-01

52 9.sooE-o3 3._ooE-ol 3,250E-01
53 1.000E-02 3.400E-0i 3.350E-01

54 1.000E-02 3.500E-01 3.450E-01

55 1.125E-02 3.613E-01 3.550E-01

56 1.375E-02 3.750E-01 3:.675E-01

57 1.500E-02 3.900E-01 _.825E-01

58 1.500E-02 4.050E-01 3.975E-OT

59 1.500E-02 4.200E-01 4.125E-01

60 1.875E-02 4.388E-01 4.275E-01

61 1.125E-02 4.500E-01 4.500E-01

J

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

I8

19

20

21

22

23

24

25

26

27

28

29

30

31

32

TRANSVERS COORDINATES OF THE GRID

DY Y YV

O.O00E÷O0 O.O00E+O0 O.O00E+O0

,7so_- o4 _. 7soE-o4 0;oooE÷66 _
7.500E-04 1.125E-03 7.500E-04

8.750E-04 2.000E-03 1.500E-03

1.000E-03 3.000E-03 2.500E-03

1.000E-03 4.000E-03 3.500E-03

1.000E-03 5.000E-03 4.500E-03

1.000E-03 6.000E-03 5.500E-03

1.000E-03 7.000E-03 6.500E-03

1.000E-03 8.000E-03 7.500E-03

1.000E-03 9.000E-03 8.500E-03

1.000E-03 1.000E-02 9.500E-03

1.000E-03 1.100E-02 1.050E-02

1.000E-03 1.200E-02 1.150E-02

1.000E-03 1.300E-02 1.250E-02

1.000E-03 1.400E-02 1.350E-02

1.000E-03 1.500E-02 1.450E-02

1.000E-03 1.600E-02 1.550E-02

1.000E-03 1.700E-02 1.650E-02

1.000E-03 1.800E-02 1.750E-02

1.000E-03 1.900E-02 1.850E-02

1.000E-03 2.000E-02 1.950E-02

1.000E-03 2.I00E-02 2.050E-02

1.000E-03 2.200E-02 2.150E-02

1.000E-03 2.300E-02 2.250E-02

1.000E-03 2.400E-02 2,350E-02

1.000E-03 2.500E-02 2.450E-02

1.000E-03 2.600E-02 2.550E-02

1.000E-03 2.700E-02 2.650E-02

1.000E-03 2.800E-02 2.750E-02

1.000E-03 2.900E-02 2.850E-02

1.000E-03 3.000E-02 2.950E-02

L
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Table 6.1-111 (cont).

33 1.000E-03 3.100E-02 3.050E-02

34 1.000E-03 3.200E-02 3.150E-02

35 1.250E-03 3.325E-02 3.250E-02

36 1.750E-03 3.500E-02 3.600E-02

37 2.000E-03 3.700E-02 3.600E-02

38 2.000E-03 3.900E-02 3.800E-02

39 2.000E-03 4.100E-02 4.000E-02

40 2.000E-03 4.300E-02 4.200E-02

41 2.000E-03 4.500E-02 4.400E-02

42 2.000E-03 4.700E-02 4.600E-02

43 2.000E-03 4.900E-02 4.800E-02

44 2.000E-03 5.100E-02 5.000E-02

45 2.000E-03 5.300E-02 5.200E-02

46 2.000E-03 5.500E-02 5.400E-02

47 2.000E-03 5.700E-02 5.600E-02

48 2.000E-03 5.900E-02 5.800E-02

49 2.000E-03 6.100E-02 6.000E-02

50 2.000E-03 6.300E-02 6.200E-02

51 2.000E-03 6.500E-02 6.400E-02

52 2.000E-03 6.700E-02 6.600E-02

53 2.000E-03 6.900E-02 6.800E-02

54 2.000E-03 7.100E-02 7.000E-02

55 2.000E-03 7.300E-02 7.200E-02

56 2.000E-03 7.500E-02 7.400E-02

57 1.000E-03 7.600E-02 7.600E-02
PART3OF3
TE92-899

The present calculations have been made using the flux-spline differencing scheme and the calculated re-
sults are essentially free of numerical diffusion. Therefore, the discrepancy between the experimental
data and the prediction can be attributed to two sources, improper boundary conditions at the inlet plane
and the deficiency of the turbulence model. As regards the inlet conditions, all quantities except the dis-
sipation rate, e, were prescribed from the measurement. These profiles are shown in Figure 6.1.2-3 and
have been normalized by the inner jet averaged velocity, Uo, and the pipe radius, R3. Above r/R3 > 0.5,

the flow field is similar to the plug flow condition created by the strong coflow. This region is not the fo-
cus of this study and is not shown in the presented figures. The uncertainties in the derivation of inlet
profile would adversely affect the calculation at downstream locations. It was shown, however, that the
use of inlet e derived from the constant length-scale assumption can result in a better prediction (Nikjooy
and Mongia, 1991).

A comparison of the normalized axial mean velocity profiles at various locations with data is shown in
Figure 6.1.2-4. These results were obtained from the k-E model. The predictions are in good agreement
with measurements. The velocity profiles are fiat near the centerline. The experimental data indicate that
the centerline velocity constantly decreases. The deceleration in axial velocity is due to the pressure ef-
fects. Comparisons of the turbulent shear stress and kinetic energy are presented in Figures 6.1.2-5 and
6.1.2-6. The k-e model overestimated the maximum level of the turbulent shear stress near the nozzle

exit, however, the differences decreased in downstream locations. The agreement between the predicted
and experimental values of kinetic energy is not as good as that for the axial velocity. Even though the
trends are similar, the predicted kinetic energies are smaller than those derived from the measurements in
downstream regions. The mean velocity profiles predicted by k-c and DSM are also very close, except for
some minor differences near the centerline (Figure 6.1.2-7).
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Comparisons of the mean and turbulence quantifies predicted by the algebraic second-moment (ASM)

closure with the measured values are presented in Figures 6.1.2-8 through 6.1.2-11. Effects of the pres-
sure-strain correlation model on mean and turbulence flow fields are analyzed. Two different model con-

stants for C1 and C2 have been examined in this study. These are CI = 3.0, C2 = 0.3 (Gibson and Younis,

1986) and C1 = 5.0, C2 = 0.0 (Donaldson, 1969). The prediction of mean axial velocity profiles using these
two models are very similar. There are substantial differences between the measured profiles and the
ASM calculation which show more mixing, and hence lower velocity, near the centerline.

The predicted stress components are shown in Figures 6.1.2-9, 6.1.2-10, and 6.1.2-11. Despite the similari-

ties that appeared in the mean velocity field, the Reynolds stress profiles are different in the shear layer
and near the centerline zone. The discrepancy observed in the turbulence field between the prediction
and the measurement is related in large to the deficiency of the pressure-strain model. At downstream
locations, the differences between the calculations have vanished. The turbulence intensities become al-
most uniform near the centerline indicating a well-mixed flow condition.

Comparisons of the normalized mean axial velocity and Reynolds stresses predicted by DSM and ASM
closures with the measured values are presented in Figures6.L2-i2 through 6.1.2-16. The pressure redis-

tribution model used for these calculations involved only the return-to-isotropy part (Oij2 = 0) with a con-
stant C1 = 5.0 in the _jl model. The calculated velocity field predicted by both models is very similar at

all axial locations. Some minor differences are observed between the two models at downstream regions.
Overall, the prediction is in good agreement with data. Examination of the calculated axial rms profiles
indicates that the DSM's results mimic the experimental data better as flow proceeds towards down-

stream regions. The maximum radial and tangential rms predicted by both models are very close and are
slightly underpredicted despite the differences that appeared in their axial components. As regards the
turbulent shear stress, the calculated profiles are similar to the exhibited data trend, however, the k-¢
model resulted in better prediction (Figure 6.1.2-18).

The calculation for a particle-laden jet was also performed over the same computational domain. The

same grid distribution was used. As regards the inlet conditions, all quantities except the dissipation rate,
_, were prescribed from the measurement. These profiles are shown in Figures 6.1.2-19 and 6.1.2-20 and
have been normalized by the inner jet averaged velocity, Uo, particles flux at the centeriine, No, and the

pipe radius, R3. The inlet dissipation rate is prescribed based on the assumption of constant length scale
and the turbulent kinetic energy (Equation 63).

Comparisons of normalized mean axial velocity, turbulent shear stress, and kinetic energy profiles pre-
dicted by k-e and DSM closure with the measured values are presented in Figures 6.1.2-21, 6.1.2-22, and

6.1.2-23. The predicted velocity result is in excellent agreement with the experimental data. The velocity
profiles are quite fiat near the centefline. The centerline velocity decreases for about 10% from the inlet

plane to station x = 200 mm. The deceleration in axial velocity probably results from the pressure effect.
The predicted pressure distribution shows a negative radial gradient favoring an outward motion. As a
result, the axial velocity is slowing down to satisfy the mass conservation. The predicted turbulent shear
stress and kinetic energy profiles are somewhat larger than those calculated by DSM closure. The k-e
model overpredicted the maximum uv and k to station x = 35 mm, however, DSM underpredicted the
peaks at all the streamwise stations. Overall, the turbulence quantities were qualitatively well predicted
and their behaviors are in agreement with the measured profiles, despite the differences that appeared in
the shear layer.

Comparisons of the mean and turbulence quantities predicted by the ASM and DSM closures with the
experimental data are shown in Figures 6.1.2-24 through 6.1.2-28. The calculated mean field obtained
from both models is essentially identical and is in excellent agreement with data. The differences be-

tween the prediction and data in the downstream region (x > 150 mm) could be related to the diffusion

process. This is cleared by noting the underprediction of Reynolds stresses in those regions. Compar-
isons of the predicted and measured streamwise turbulence intensity profiles show some minor differ-

F
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encesbetweentheASMandDSMincalculatingthe peak values. The differences appear to be more sig-

nificant for single-phase flow than this two-phase case. At most of the locations the turbulence intensity
near the centeriine was underpredicted. This is due in part to an excessive turbulence dissipation rate at
the irdet. Nevertheless, the turbulence intensity profiles obtained from these models are similar to the ex-

hibited experimental trend. The discrepancy observed in the turbulence field between the prediction and
measurement is related in large to the deficiency of the pressure-strain model. This has resulted in un-
derprediction of the maximum values of radial and tangential turbulence intensities. The discrepancies
between the prediction and measurement are less significant in the case of shear stresses. In the down-
stream region (x > 150 nun), the calculated results deviate from the data in the outer zone. The results
demonstrate that the dispersed phase had no significant effects on the continuous phase.

Figure 6.1.2-29 presents the mean velocity of the dispersed phase. In this calculation the two-phase k-e
turbulence model was used. It can be seen that the ST approach provides good predictions compared

with the experimental data, whereas the DT treatments perform poorly for the particles' velocity. Accord-
ing to the DT approach, a particle moves radially due to its initial mean radial velocity and/or the mean
radial gas velocity, both of which are very small compared with the axial component. This might explain
the narrow distribution of particle mean axial velocity predicted by the DT.

Predicted and measured mean particle velocities predicted by the DSM and ST approach along the axis
are shown in Figure 6.1.2-30. The calculated velocities are based on the particles' mass flow rate weighted
averages. Only a portion of the entire radial section where particles could be found are presented. The
predicted axial values are in good agreement with data. Despite the variations observed in the gas phase
velocity near the centerline, the particle velocity shows almost no change. This is related to the fact that
the particle dynamic relaxation time, Xd, is very large compared to the turbulent characteristic time, z.

The reason for large Zd is found in the large particle-to-gas density ratio (2500:1.17). This clearly shows

that the inertia force is responsible for the particles' motion and the effects of drag force are marginal. The

predicted profiles of mean radial velocity of particles are in qualitative agreement with the data. The ra-
dial velocity component, however, is at least one order of magnitude smaller than the axial component. It
is, therefore, reasonable to believe that their quantitative disagreement would not severely affect other re-
suits.

The agreements between the predicted and measured fluctuating velocities of the particles are not favor-
able (Figures 6.1.2-31, 6.1.2-32, and 6.1.2-33). The data show similar radial and tangential fluctuating
components. On the other hand, the axial rms value is about 1.5 times larger than others. The model has
successfully predicted the anisotropy feature of the dispersed flow field. However, all three components
are predicted to be higher than the data.
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Figure 6.1.2-1. Confined round jet geometrical details.
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6.2 UNCONFINED SINGLE ANNULAR JET

In this section, study of an unconfined annular flow configuration (Figure 6.2-1) is presented. The flow
conditions used for the case considered here are given in Table 6.2-I. In this configuration, the test section
was directed vertically downward and the annular jet discharged into stagnant air. Measurements have
been taken using a two-color, two-component laser anemometer system at eight axial stations: 3, 15, 25,
35, 50, 75, 150, and 300 mm from the exit plane of the jet exit. At each spatial point, the laser simultane-

ously measured two orthogonal components of velocity. To get all three components, two scans were

taken. One was used to measure U, V, u2, v2, and uv components and the other was able to measure U,

W, u2, w 2, and uw components. Thus all three mean and rms velocity components, uv and uw were

measured along with U, and u2 was measured twice.

The computational mesh used for all calculations consisted of 61 x 70 nonuniformly distributed grid
points in the axial (x) and radial (r) directions (Figure 6.2-2). The tabulated x and r grid coordinates are
shown in Table 6.2-II. A finer grid spacing was used near the inlet, centerline, and in the shear layer. The
computational domain extended from the first measurement plane to 450 mm downstream of the nozzle
exit. In the radial direction, the entrainment boundary was placed at 170 mm from the axis of symmetry.
The convergence criterion used to terminate the iterations was the absolute sums of the mass and momen-

tum residuals at all internal grid points, normalized by inlet mass and momentum fluxes, less than 10 -3.

A calculation procedure for elliptic flow requires boundary conditions on all boundaries of the computa-
tional domain. Four kinds of boundaries need consideration, namely, inlet, axis of symmetry, outlet, and
the entrainment boundary. At the inlet boundary, which was located at the first measurement plane (x =

3 mm), the measured profiles of U, V, u2, v 2, w 2, and uv were applied. These profiles are shown in Fig-
ure 6.2-3. Two different approaches were used to prescribe the inlet dissipation rate. The first approach
is based on the assumptions of constant length scale and turbulent kinetic energy, namely

= k1"5/0.20 Dj (64)

where Dj is the jet diameter. The second approach, based on the assumption of local equilibrium (Pk =
[_) for turbulence energy, can be written as

= 0.3k OU (65)
_r

At the axis of symmetry, the radial velocity, shear stresses, and radial gradients of other variables are set
to zero. At the outlet, axial diffusion is neglected for all variables. Along the entrainment boundary,
which was placed sufficiently far from the axis of symmetry, the quantity (rV) was assumed zero, and k
and _ were assigned arbitrary low values yielding an eddy viscosity, ]_t = 10_.

Table 6.2-I.

Unconfined _ingle 0nnul0r jet exl_rimcntal flow conditions.

RI 13.82 (mm)

R2 18.35 (mm)
h 7.0 (mm)

Uo 6.9 (m/s)

Annular flow rate 0.0033 (Kg/s)
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Table 6.2-|I.

Single annular iet grid definition.

STREAMWISE COORDINATES OF THE GRID

I DX

1 O.O00E÷O0

2 7.750E-04

3 1.625E-03

4 2.o5oE-o3
5 2.500E-03

6 2.700E-03

7 2.938E-03

8 3.313E-03
9 3.888[-03

10 4.588E-03

1l 5.250E-03

12 5.775E-03

13 6.238E-03

14 6.713E-03

16 7.200E-03

17 7.250E-03

i8 7.288E-03

19 7.300E_03

20 7.300E-03

21 7.288E-03

22 7.275E-03

23 7.288E-03

24 7.300E-03

25 7.300E-03

26 7.300E_03

27 7.300E-03

28 7.300E-03

29 7.300E-03

30 7.300E-03

31 7.300E-03

32 7.300E-03

33 7.300E-03

34 7.300E-03

35 7.300E-03

36 7.300[-03

37 7.300£-03

38 7.300E-03

39 7.200£-03

40 7.200E-03

41 7.400E-03

62 7.600E-03

43 7.325E-03

44 7.325E-03

45 7.275E-03

45 7.275E-03

67 7.300E-03

X XU

O.O00E÷O0

7,750E-04

2.400E-03

4.450E-03

6,950E-03

9.650E-03

1.259E-02

1.590E-02

1.979E-02

2.438E-02

2.963E-02

3.540E-02

4.164E-0_

4.835E-02

5.541E-02

6.261E-02

6.986E-02

7.715E-02

8.645£-02

9.175E-02

9.904E-02

1.063E-01

1.136E-01

1.209E-01

1.282E-01

1.355E-01

1._28E-01

1.501E-01

1.574E-01

1.647E-01

1.720E-01

1.793E-01

1.866E-01

1.939E-01

2.012E-01

2.085E-01

2.158E-01

2.231E-01

2:303E-01

2.375E-01

2.4_9E-01

2.523E-01

2.596E-01

2.670E-01

2.742E-0!

2.815E-01

2.888E-01

O.O00E+O_

O.O00E+O0

i ..........
3.25o_-0_-
5.650E-03

8.250E-03

1.105E-02

1.413£-02

1.768E-02

2.190E-02

2.685E-02

3.240E-02

3.840E-02

__488E-0_

5.183E-02

5.900E-02

6.623E-02
7.35OE-02

8.080E-02

8.810E-02

9.540E-02

1,027E-01

1.100E-01

1.173E-01

1.246E-01

1.319E-01

1.392E-01

1.665E-01

1.538E-01

1.611E-01

1.684E-01

1.757E-01

1.830E-01

1.903E-01

1.976E-01

2.049E-01

2.122£-01

2.195E-01

2.268E-01

2.339E-01

2.612£-01

2.687E-01

2.560E-01

2.633E-01

2.706E-01

2.779E-01

2.852E-01
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Table 6.2-II (cont).

48 7.450E-03 2.963E-01 2.925E-01

49 7.775E-03 3.040E-01 3.001E-01

50 7.975E-03 3.i20E-01 3.080E-01

51 8.500E-03 3.205E-01 3.160E-01

52 9.500E-03 3.300E-01 3.250E-01

53 1.000E-02 3.400E-01 3.350E-01

54 1.000E-02 3.500E-01 3.450E-01

55 1.125E-02 3.613E-01 3.550E-01

56 1.375E-02 3.750E-01 3.675E-01

57 1.500E-02 3.900E-01 3.825E-01

58 1.500E-02 4.050E-01 3.975E-01

59 1.500E-02 4.200E-01 4.125E-01

60 1.500E-02 4.350E-01 4.275E-01

61 7.500E-03 4.425E-01 4.425E-01

TRANSVERS COORDINATES 0F THE GRID

J DY Y YV

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

O.O00E+O0 5.000E-04 O.O00E+O0

2.500E-04 7.500E-04 5.000E-04

7.500E-04 1.500E-03 1.000E-03

1.000E-03 2.500E-03 2.000E-03

1.000E-03 3.500E-03 3.000E-03

1.000E-03 4.500E-03 4.000E-03

1.000E-03 5.500E-03 5.000E-03

1.000E-03 6.500E-03 6.000E-03

1.000E-03 7.500E-03 7.000E-03

1.000E-03 8.500E-03 8.000E-03

1.000E-03 9.500E-03 9.000E-03

1.000E-03 1.050E-02 1.000E-02

1.000E-03 1.150E-02 1.100E-02

1.000E-03 1.250E-02 1.200E-02

7.500E-04 1.325E-02 1.300E-02

5.000E-04 1.375E-02 1.350E-02

5.000E-04 1.425E-02 1.400E-02

5.000E-04 1.475E-02 1.450E-02

5.000E-04 1.525E-02 1.500E-02

5.000E-04 1.575E-02 1.550E-02

5.000E-04 1.625E-02 1.600E-02

5.000E-04 1.675E-02 1.650E-02

5.000E-04 1.725E-02 1.700E-02

5.000E-04 1.775E-02 1.750E-02

5.000E-04 1.825E-02 1.800E-02

5.000E-04 1.875E-02 1.850E-02

5.000E-04 1.925E-02 1.900E-02

5.000E-04 1.975E-02 1.950E-02

7.500E-04 2.050E-02 2.000E-02

1.000E-03 2.150E-02 2.100E-02

1.000E-03 2.250E-02 2.200E-02
PAR'T2OF 3
TE92-1140
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Table 6.2-II (cont).

32 1.000E-03 2.350E-02 2.300E-02

33 1.000E-03 2.450E-02 2.400E-02

34 1.000E-03 2.550E-02 2.S00E-02

35 1.000E-03 2.650E-02 2.600E-02

36 1.000E-03 2.750E-02 2.700E-02

37 1.000E-03 2.850E-02 2.800E-02

38 1.000E-03 2.950E-02 2.900E-02

39 1.500E-03 3.100E-02 3.000E-02

40 2.000E-03 3.300E-02 3.200E-02

41 2.500E-03 3.550E-02 3.400E-02

62 3.000E-03 3.850E-02 3_70bE-02

43 3.000E-03 4.150E-02 4.000E-02

44 3.000E-03 4.450E-02 4.300E-02

65 3.500E-03 4:800E-02 4.600E-02

46 4.000E-03 5.200E-02 5.000E-02

47 4.500E-03 5.650E-02 5.400E-02

48 5.000E-03 6.150E-02 5.900E-02

49 S.O00E-03 6.650E-02 6.400E-02

50 S.O00E-03 7.150E-02 6.900E-02

51 5.000E-03 7.650E-02 7.400E-02

52 5.000E-03 8.150E-02 7.900E-02

53 5.000E-03 8.650E-02 8.400E-02

54 5.000E-03 9.150E-02 8.900E-02

55 5.000E-03 9.650E-02 9.400E-02

56 5.S00E-03 1.020E-01 9.900E-02

57 5.500E-03 1.075E-01 1.050E-01

58 5.000E-03 1.125E-01 1.100E-01

59 5.000E-03 1,175E-01 1.150E-01

60 5.000E-03 1.225E-01 1.200E-01

61 5.000E-03 1.275E-01 1.250E-01

62 5.000E-03 1.325E-01 1.300E-01

63 5.000E-03 1.375E-01 1.350E-01

64 5.000E-03 1.425E-01 1.400E-01

65 5.000E-03 1.475E-01 1.450E-01

66 5.000E-03 1.525E-01 1.500E-01

67 5.000E-03 1.575E-01 1.550E-01

68 5.000E-03 1.625E-01 1.600E-01

69 5.000E-03 1.675E-01 1.650E-01

70 2.SOOE-03 1.700E-01 1.700E-01

PART3OF3
TE92-1140

In an attempt to assess the importance of inlet turbulence dissipation rate (ein) on mean velocity and

stress fields predictions, two different approaches were followed to determine ein (Equations 64 and 65).

Comparisons of the calculated mean axial veloci_ profiles by DSM with the experimental data are illus-

trated in Figure 6.2-4. The results show differences in the prediction of peak and centerline values in the

developing region. The inlet e profile calculated, based on equilibrium assumption (Equation 65), re-
sulted in a closer prediction with data near the inlet plane. Further downstream, the differences between

the model and data become more severe. In developing flow region, the experiment shows that the mo-

mentum is being transferred towards the centerline, increasing the centerline velocity. However, the
model did not simulate this process adequately. As a result, the velocity was underpredicted in the inner

region, however, the DSM performed reasonably in the outer region. At downstream (x > 150 mm), the

calculated velocity field is in good agreement with measurement, although some minor discrepancies ap-
pear near the centerline.

Comparisons of the predicted turbulence intensities from the DSM closure are shown in Figures 6.2-5, 6.2-

6, 6.2-7, and 6.2-8. When the inlet e distribution is calculated with the constant length scale assumption,
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the profiles are closer to the exhibited data trend. A wide disparity exists between this calculation and
the calculation with _in obtained from Equation 65. The model indicates a faster mixing in the inner re-

gion than is shown by experiment. Numerical study indicates that the inlet e profile is a very important
factor in predicting the maximum values of mean and turbulence quantities. The turbulent normal
stresses are decreased due to an excessive dissipation rate at the inlet. Comparisons of radial and tangen-

tial Reynolds stress components reveal that essentially the same trends are observed for v 2 and w 2 pro-
files. The effects of the ¢in on the shear stress profiles are found to be serious near the inlet region where

the central recirculation is formed (Figure 6.2-8). In comparison with the data, the calculated values are
not in good agreement in the developing flow region. A wide disparity exists between the calculations.
The ¢in derived from constant length scale assumption resulted in more realistic profiles. However, the
locations of the maxima and minima have been shifted in the developing region of the flow field.

The predicted mean axial velocity profiles from the k-¢ model are compared with data in Figure 6.2-9.
These results were also obtained using the two different inlet dissipation rate profiles. Similar behavior is
also observed here. The major differences between the two calculations appeared in the region where
maximum velocity occurs. Both methods are unable to predict the flow in the center region accurately.
But the discrepancies are removed as flow proceeds towards the downstream region. Figure 6.2-10 shows
the kinetic en_gy profiles at various axial locations. Again, the behavior of two sets of computations is in
closer agreement to each other than to measurement. Most of the differences are seen in the peak and
centerline regions. The agreement between the predicted and experimental values of kinetic energy is not
as good as that for the axial velocity. Even though to some extent the trends are similar, the predicted ki-
netic energy levels are smaller than those derived from the measurements. For the ease of comparison,
the predicted mean axial velocity and turbulent shear stress profiles from the DSM and k-¢ models have
been compared in Figures 6.2-11 through 6.2-14. Depending on the shape of _in distribution, the discrep-

ancies between the DSM and k-e model predictions can be severe or minor. This clearly demonstrates the
importance of inlet profiles, particularly the dissipation rate for turbulence model validation (Sturgess et
al, 1983).
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6.3 SINGLE ANNULAR SWIRLING JET

6.3.1 Unconfined Annular Swirling let

In this section, computations for an unconfined axisymmetric annular swirling jet are reported. This con-
figuration is the same as the previous one, but with a swifter in the annular passage. In this configura-

tion, an annular jet was directed vertically downward within a 457 mm 2 wire mesh screen. Experimental

data were obtained at eight axial locations 3, 15, 25, 35, 50, 75, 150, and 300 mm from the exit plane of the
injector. The flow conditions used for this case are given in Table 63-I and the sketch of the test section is
shown in Figure 6.3.1-1.

The governing equations were discretized using the control volume approach (Patankar, 1980). The flux-
spline differencing scheme was applied for obtaining the numerical scheme. The computational mesh
used for all calculations consisted of 6i x 70 nonuniformly distributed grid points in the axial (x) and ra-
dial (r) directions. A finer grid spacing was used near the inlet, centerline, and in the shear layer (Figure
63.1-2). The tabulated grid points in the axial and radial directions are shown in Table 6.3-II. The com-
putational domain extended from the first measurement plane, located downstream of the nozzle exit at a
distance of 3.0 mm to 450 mm.

A calculation procedure for elliptic flow needs boundary conditions on all boundaries of the computa-
tional domain. Four kinds of boundaries, namely, inlet, axis of symmetry, outlet, and the entrainment

boundary, need consideration. At the inlet boundary located at the first measurement plane, the mea-
sured profiles of mean velocities and Reynolds stresses were prescribed. These profiles are shown in Fig-
ure 6.3.1-3. The k-profile was obtained from the measured Reynolds normal stress components. The
value at the inlet plane (ein) was derived from the kinetic energy profile and constant length-scale as-

sumption. At the axis of symmetry, shear stresses, radial velocity, and radial gradient of other variables
are set to zero. At the outlet, axial diffusion is neglected for all variables. Along the entrainment bound-
ary, the quantity (rV) was assumed constant. In addition, the axial velocity (U) and tangential velocity
(W) were assumed to be zero. Turbulent kinetic energy and its dissipation rate were assigned arbitrary
low values yielding an eddy viscosity, _ = 10_.

Predictions of mean axial and tangential velocities obtained from the k-e and DSM are illustrated in Fig-
ures 6.3.1-4 and 6.3.1-5. A wide disparity exists between the models' predictions of axial velocity espe-
cially near the centeftine. There are substantial differences in the capability of the various models to
promote or hinder formation of the recirculation zone. With regard to the comparison between mea-
surements and calculations, the trend predicted by the k-c model seems to be better away from the cen-
teftine. The maximum velocity was underpredicted by both models. The results of the DSM closure
show less radial diffusion process. As a result, in comparison with data, the peak values were all shifted.
One of the main reasons for discrepancies between the model and data can be related to the uncertainties
in treating the open boundaries. This is clear when the models are applied for confined swirling flow.
The k-e model also resulted in slightly better prediction for tangential velocity. An examination of the
calculated Reynolds stresses (Figures 6.3.1-6, 6.3.1-7, 6.3.1-8) indicates that the relative performance of the

Table 6.3-I.

Unqonfined annular _wirling jet test configuration.

R1

R2
h

Uo

Swift angle
Swift airflow rate

13.82 (mm)

18.35 (mm)
7.0 (mm)
6.9 (m/s)

60deg
0.0033 (Kg/s)
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Table6.3-II.
Unconfined annular swirling let mid definition

STREAMWISE COORDINATES OF THE GRID

I DX X XU

1 O.O00E+O0 O.O00E+O0 O.O00E÷O0

2 7.750E-04 7.TSGE-z_ O.O00E+O0

3 1.625E-03 2.400E-03 1.550E-03

4 2.050E-03 4.450E-03 3.250E-03

5 2.500E-03 6.950E-03 5.650E-03

6 2.700£-03 9.650E-03 8.250E-03

7 2.938E-03 1.259E-02 1.105E-02

8 3.313E-03 1.590E-02 1.413E-02

9 3.888E-03 1.979E-02 1.768E-02

10 4.588E-03 2.638E-02 2.190E-02

11 5.250E-03 2.963E-02 2.685E-02

12 5.775E-03 3.540E-02 3.240E-02

13 6.238E-03 _.164E-02 3.840E-02

14 6.713E-03 _,_35E-_ 4.488E-02

15 7.063E-03 5.541E-02 5.183E-02

16 7.200E-03 6.261E-02

17 7.250E-03

18 7.288E-03

19 7.300E-03

20 7.300E-03

21 7.288E-03

22 7.275E-03

23 7.288E-03

24 7.300E-03

25 7.300E-03

26 7.300E-03

27 7.300E-03

28 7.300E-03

29 7.300E-03

30 7.300E-03

31 7.300E-03

32 7.300E-03

33 7.300E-03

34 7.300E-03

35 7.300E-03

36 7.300E-03

37 7.300E-03

38 7.300E-03

39 7.200E-03

40 7.200E-03

41 7.400E-03

42 7.400E-03

43 7.325E-03

44 7.325E-03

45 7.275E-03

46 7.275E-03

47 7.300E-03

6.986E-02

7.715E-02

8.445E-02

9.175E-02

9.904E-02

1.063E-01

1.1S6£-01

1.209E-0i

1.282E-01

1.355E-01

1.428E-01

1.501E-01

1.574E-01

1.647E-01

1.720E-01

1 793E-01

1 866E-01

1 939E-01

2 012E-01

2 085E-01

2 158E-01

2.231E-01

2.303E-01

2.375E-01

2.449E-01

2.523E-01

2.596E-01

2.670E-01

2.742E-01

2.815E-01

2.888E-01

5.900E-02

6.623E-02

7.350E-02

8.080E-02

8.810E-02

9.540E-02

1.027E-01

1.100E-01 _>

1.173E-01

1.246£-01

1.319E-01

1.392E-01

1.465E-01

1.538£-01

1.611E-01

1.684E-01

1.757E-01

1.830E-01

1.903E-01

1.976E-01

2.049E-01

2.122E-01

2.195E-01

2.268E-01

2.339E-01

2.412E-01

2.487E-01

2.560E-01

2.633E-01

2.706E-01

2.779E-01
PNTrIoF3

2.852E-01 TE92-11U
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Table6.3-11(cont).

68 7.450E-03 2.963E-01 2.925E-01

49 7.775E-03 3.040E-01 3.001E-01

50 7.975E-03 3.120E-01 3.080E-01

51 8.500E-03 3.205E-01 3.160E-01

52 9.500E-03 3.300E-01 3.250E-01

53 1.000E-02 3.400E-01 3.350E-01

54 1.O00E-02 3.500E-01 3.450E-01

55 1.125E-02 3.613E-01 3.550E-01

56 1.375E-02 3.750E-01 3.675E-01

57 1.500E-02 3.900E-01 3.825E-01

58 1.500E-02 4.050E-01 3.975E-01

59 1.500E-02 4.200E-01 4.125E-01

60 1.500E-02 4.350E-01 4.275E-01

61 7.500E-03 4.425E-01 4.425E-01

TR._SVERS COORDINATES OF THE GRID

J DY Y YV

1 O.O00E+O0 5.000E-04 O.O00E+O0

2 2.500E-04 7.500E-04 5.000E-04

3 7.500E-04 1.500E-03 1.000E-03

4 1.000E-03 2.500E-03 2.000E-03

5 1.000E-03 3.500E-03 3.000E-03

6 1.O00E-03 4.500E-03 4.000E-03

7 1.000E-03 5.500E-03 5.000E-03

8 1.O00E-03 6.500E-03 6.000E-03

9 1.O00E-03 7.500E-03 7.000E-03

10 1.O00E-03 8.500E-03 8.000E-03

11 1.000E-03 9.500E-03 9.000E-03

12 1.000E-03 1.050E-02 1.000E-02

13 1.000E-03 1.150E-02 1.100E-02

14 1.000E-03 1.250E-02 1.200E-02

15 7.500E-04 1.325E-02 1.300E-02

16 5.000E-04 1.375E-02 1.350E-02

17 5.000E-04 1.425E-02 1.400E-02

18 5.000E-04 1.475E-02 1.450E-02

19 5.000E-04 1.525E-02 1.500E-02

20 5.000E-04 1.575E-02 1.550E-02

21 5.000E-04 1.625E-02 1.600E-02

22 5.000E-04 1.675E-02 1.650E-02

23 5.000E-04 1.725E-02 1.700E-02

24 5.000E-04 1.775E-02 1.750E-02

25 5.000E-04 1.825E-02 1.800E-02

26 5.000E-04 1.875E-02 1.850E-02

27 5.000E-04 1.925E-02 1.900E-02

28 5.000E-04 1.975E-02 1.950E-02

29 7.500E-04 2.050E-02 2.000E-02

30 1.000E-03 2.150E-02 2.100E-02

31 1.000E-03 2.250E-02 2.200E-02
PAR'l"2 OF 3
TE92-1188
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Table6.3-II(cont).

32 1.000E-03 2.350E-02 2.300E-02

33 1.000E-03 2.650E-02 2.400E-02

34 1.000E-03 2.550E-02 2.500E-02

35 1.000E-03 2.650E-02 2.600E-02

36 1.000E-03 2..751_02 2.700E-02

37 1.000E-03 2.850E-02 2.800E-02

38 1.000E-03 2.950E-02 2.900E-02

39 1_500E-03 3.100E-02 3.000E-02

40 2.000E-03 3.300E-02 3.200E-02

41 2.500E-03 3.SSOE-02 3.400E-02
42 3,000E-03 3.850E-02 3.700E-02

43 3.000_-03 4.150E-02 4_000E'02

44 3.000E-03 _.iiSOE-02 4.300E_02

45 3.500E-03 4.800E-02 4.600E-02

46 4.000E-03 5.200E-02 5.000E-02

47 4_-03 5.650E-02 5.400E-02

48 5.000E-03 6.!50E-02 5.900E-02

49 5.000E-03 6.650E-02 6.400E-02

50 5.000E-03 7.150E-02 6.900E-02

51 5.000E-03 7.650E-02 7.400E-02

52 5.000E-03 8.150E-02 7.900E-02

53 5.000E-03 8.650E-02 8.400E-02

54 5.000E-03 9.150E-02 8.900E-02

55 5.000E-03 9.650E-02 9.400E-02

56 5.500E-03 1.020E-01 9.900E-02

57 5.500E-03 1.075E-01 1.050E-01

58 5.000E-03 1.125E-01 1.100E-01

59 5.000E-03 1.175E-01 1.150E-01

60 5.000E-03 1.225E-01 1.200E-01

61 5.000E-03 1.275E-01 1.250E-01

62 5.000E-03 1.325E-01 1.300E-01

63 5.000E-03 1.375E-01 1.350E-01

64 5.000E-03 1.425E-01 1.400E-01

65 5.000E-03 1.475E-01 1.450E-01

66 5.000E-03 1.525E-01 1.500E-01

67 5.000E-03 1.575E-01 !.550E-01

68 5.000E-03 1.625E-01 1.600E-01

69 5.000E-03 1.675E-01 1.650E-01

70 2.500E-03 1.700E-01 1.700E-01
PART30F3
TEg2-11U

model is dependent on the flow region. The results show differences, especially in the prediction of the
centerline values. The discrepancy can be the result of the inlet dissipation rate profile. The inlet dissipa-
tion rate is a determining factor in predicting the maximum level of turbulence intensity. Comparison of
the calculated shear stress profiles with data is shown in Figure 6.3.1-9. In comparison with the mea-
surement, the predicted values by the k-¢ model are in better agreement, however, the maximum and
minimum have not been well predicted.

In an attempt to assess the importance of inlet dissipation rate (ein) on flow field, calculations were also

made using an alternative ¢in distribution, which was derived from local equilibrium assumption for tur-

bulence energy (Equation 65). Comparison of the calculated mean axial and tangential velocity profiles
by the k-¢ model with the experimental data are presented in Figures6.3.1-10 and 6.3.1-11. Numerical ex-
periments indicate that the inlet ¢ profile is the single most important factor in predicting the maximum
values of mean and turbulence quantifies. This point is now clear by comparing the two sets of results.
The major differences between these two conditions are in the peak region. The inlet dissipation rate
profile derived from the equilibrium assumption resulted in shorter maximum velocity and smaller recir-
culation zone to satisfy the global mass conservation. The tangential velocity has also been affected simi-
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larlyby ein- Figures 6.3.1-12 and 6.3.1-13 show comparisons of turbulent shear stress and kinetic energy

profiles. The ein found by equilibrium assumptions resulted in higher shear and energy. These will in-

crease the radial diffusion process, and as a result, the peak velocities will be quickly diminished.
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63,2 Confined Annular Swirling_ let

The predicted mean and turbulence fields obtained from the k-e, ASM, and DSM closures are compared

with the experimental data. The experiments were performed in a modeled laboratory combustor and
the complex flow field has an aerodynamically controlled, swirl stabilized recirculation zone. A two-
color, two-component laser anemometer system was used to measure the velocity components. At each
spatial point, the laser simultaneously measured two orthogonal components of velocity. To get all three

components, two scans were taken. One was used to measure U, V, u2, v2, and uv components, and the

other one was able to measure U, W, u2, w 2, and uv components. Thus all three mean and fluctuating

velocity components were measured, with U and u 2 measured twice. Data were obtained at eight axial
stations 4, 15, 25, 35, 50, 75, 100, and 150 mm from the exit of the swirler. At each station, between 10 and

20 radial points were scanned, as determined by the desired level of profile resolution. The experimental
test parameters are summarized in Table 6.3-III and the sketch of the test section is shown in Figure 6.3.2-
1.

A nonuniform grid of 48 x 44 in the axial and radial directions was used for all calculations (Figure 6.3.2-
2). A finer grid spacing was used near the inlet, centefline, and in the shear layer. The streamwise and
transverse coordinates of the grid points are shown in Table 6.3-W. The elliptic nature of the transfer
equations requires that boundary conditions be specified on the four sides of the solution domain. Four

kinds of boundaries need consideration: inlet, axis of symmetry, wall, and outlet. At the inlet bounda_,
which is located at the first measurement plane (x = 4 mm), the measured profiles of U, V, W, u2, v 2, w '_,

uv, and uw are applied. These profiles are shown in Figure 6.3.2-3. Three different approaches were
used to prescribe the inlet dissipation rate. The first approach is based on the assumption of constant
length scale and turbulent kinetic energy, namely

(66)
0.2 D|

where Dj is the jet diameter. Here, the macrolength scale of 0.2Dj was estimated through the sensitivity
analysis. The second approach is derived from the k-_ eddy viscosity and neglecting the av/ax term at
the inlet to relate the turbulent shear stresses to their corresponding mean strain rates. That is,

e=C,k 2[_0rl _or rlj

+( )211/2
(67)

Table 6.3-III.

Confined annular swirling jet test configurations

RI
R2
R3
h
Uo

Swirl angle
Swirl airflow rate
Dilute airflow rate

13.82 mm
18.35 mm
76.00 mm
7.0 mm
6.9 m/s
6O

0.0033 kg/s
0.272 kg/s
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Table 6.3-W.

Confined annular swirling jet L_riddefinition.

STREAMWISE COORDINATES OF THE GRID

I DX X XU

I O.O00E+O0 O.O00E÷O0 O.O00E÷O0

2 7.750E-04 7.750E-04 O.O00E+O0

3 1.625E-03 2.400E-03 1.550E-03

4 2.050E-03 4.450E-03 3.250E-03

5 2.500E-03 6.950E-03 5.650E-03

6 2.700E-03 9.650E-03 8.250E-03

7 2.938E-03 1.259E-02 1.105E-02

8 3.313E-03 1.590E-02 1.413E-02

9 3.888E-03 1.979E-02 1.768E-02

10 4.588E-03 2.438E-02 2.190E-02

11 5.250E-03 2.963E-02 2.685E-02

12 5.775E-03 3.540E-02 3.240E-02

13 6,238E-03 4.164E-02 3.840E-02

14 6.713E-03 _.835E-02 4.488E-02

15 7.063E-03 5.541E-02 5.183E-02

16 7.200E-03 6.261E-02 5.900E-02

17 7.250E-03 6.986E-02- 6.623E-02

18 7.288E-03 7.715E-02 7.350E-02

19 7.300E-03 8.645E-02 8.080E-02

20 7.300E-03 9.175E-02 8.810E-02

21 7.288E-03 9.904E-02 9.540E-02

22 7.275E-03 1.063E-01 1.027E-01

23 7.288E-03 1.136E-01 1.100E-01

24 7.300E-03 1.209E-01 1.173E-01

25 7.300E-03 1.282E-01 1.246E-01

26 7:3(YOE_03 1.355E-01 1.319E-01

27 7.300E-03 1.428E-01 1.392E-0|

28 7.300E-03 1.501E-01 1.465E-01

29 7.300E-03 1.574E-01 1.538E-01

30 7.300E-03 1.647E-01 1.611E-01

31 7.300E-03 1.720E-01 1.684E-01

32 7.300E-03 1.793E-01 1.757E-01

33 7.300E-03 1.866E-01 1.830E-01

34 7.300E-03 1.939E-01 1.903E-01

35 7.300E-03 2.012E-01 1.976E-01

36 7.300E-03 2.085E-01 2.0_9E-01

37 7.300E-03 2.158E-01 2.122E-01

38 7.300E-03 2.231E-01 2.195E-01

39 7.200E-03 2.303E-01 2.268E-01

40 7.200E-03 2.375E-01 2.339E-01

41 7.400E-03 2.449E-01 2.412E-01

43 7.400E-03 2.523E-01 2.487E-01

43 7.325E-03 2.596E-01 2.560E-01

44 7.325E-03 2.670E-01 2.633E-01

45 7.275E-03 2.742E-01 2.706E-01

46 7.275E-03 2.815E-01 2.779E-01

47 7.300E-03 2.888E-01 2.852E-01

48 3.650E-03 2.925E-01 2.925E-01
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Table 6.3-W (cont).

TRANSVERS COORDINATES OF THE GRID

J DY Y YV

1 O.O00E÷O0 O.O00E+O0 O.O00E+O0

2 5.000E-04 5.000E-04 O.O00E+O0

3 1.500E-03 2.000E-03 1.000E-03

4 2.000E-03 4.000E-03 3.000E-03

5 2.000E-03 6.000E-03 5.000E-03

6 2.000E-03 8.000E-03 7.000E-03

7 2.000E-03 1.000E-02 9.000E-03

8 2.000E-03 1.200E-02 1.100E-02

9 2.000E-03 1.400E-02 1.300E-02

10 1.750E-03 1.575E-02 1.500E-02

11 1.250E-03 1.700E-02 1.650E-02

12 1.000E-03 1.800E-02 1.750E-02

13 1.000E-03 t.900E-02 1.850E-02

14 1.000E-03 2.000E-02 1.950E-02

15 1.000E-03 2.100E-02 2.050E-02

16 1.250E-03 2.225E-02 2.150E-02

17 1.750E-03 2.400E-02 2.300E-02

18 2.000E-03 2.600E-02 2.500E-02

19 2.000E-03 2.800E-02 2.700E-02

20 2.000E-03 3.000E-02 2.900E-02

21 2.000E-03 3.200E-02 3.100E-02

22 2.000E-03 3.400E-02 3.300E-02

23 2.000E-03 3.600E-02 3.500E-02

24 2.000E-03 3.800E-02 3.700E-02

25 2.000E-03 4.000E-02 3.900E-02

26 2.000E-03 4.200E-02 4.100E-02

27 2.000E-03 4.400E-02 4.300E-02

28 2.000E-03 4.600E-02 4.500E-02

29 2.000E-03 4.800E-02 4.700E-02

30 2.000E-03 5.000E-02 4.900E-02

31 2.000E-03 5.200E-02 5.100E-02

32 2.000E-03 5.400E-02 5.300E-02

33 2.000E-03 5.600E-02 5.500E-02

34 2.000E-03 5.800E-02 5.700E-02

35 2.000E-03 6.000E-02 5.900E-02

36 2.000E-03 6.200E-02 6.100E-02

37 2.000E-03 6.400E-02 6.300E-02

38 2.000E-03 6.600E-02 6.500E-02

39 2.000E-03 6.800E-02 6.700E-02

40 2.000E-03 7.000E-02 6.900E-02

4] 2.000E-03 7.200E-02 7.100E-02

42 2.000E-03 7.400E-02 7.300E-02

43 1.500E-03 7.550E-02 7.500E-02

44 5.000E-04 7.600E-02 7.600E-02
PART2OF2
TE02-1223

where Cp = 0.09 is a model constant. The third approach, based on the assumption of local equilibrium

for turbulence energy (Pk = P_), Boussinesque approximation, isotropic effective viscosity, and ignoring

streamwise velocity gradient, can be written as

(68)
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At the axis of symmetry, the radial velocity, shear stresses, and radial gradients of other variables are set

to zero. All strearnwise gradients are presumed zero in the exit plane of the calculation domain except for
axial velocity, which needs to be corrected to satisfy integral mass balance. The conventional logarithmic
law, which is based on the local equilibrium assumption, is applied to determine the wall shear stress

components in the axial and tangential directions. These shear stresses are used as boundary conditions
for U and W momentum, as well as for the uv and rw equations. The boundary conditions for normal
stresses are imposed through the modification of their production terms using the new calculated wall
shear stresses.

The computational domain extends from the first experimental location (x = 4 mm) to 300 mm down-

stream of the jet exit. The reason for this selection wa_ to preven_r_rcula_fion at the exit. Since _e mea,
sured flow does not show any x dependence at x > 150 mm, the specified condition, 0/_ = 0, at the exit
plane of the calculation domain is realistic. The coupled equations and boundary conditions are solved

numerically in a sequential manner using the staggered grids for velocities and shear stresses (Figure
6.3.2-4). The main advantage of staggering the locations of stresses is to enhance numerical stability, a re-
sult of high coupling between the shear stresses and related mean strains.

The present calculations have been made using the higher order numerical scheme, and the calculated re-

suits are essentially free of numerical diffusion. Theretore, the dis_rei_ancies between the experimental
data and the predictions can be attributed to two sources: improper boundary conditions at-the inlet

plane and the deficiencies of the turbulence model. As regards the inlet conditions, all quantities except
the dissipation rate (e) were prescribed from the measurement. Uncertainties in the derivation of the e

profile, however, would adversely affect the calculations at downstream locations. In an attempt to as-

sess the importance of inlet dissipation rate (ein) on flow field prediction, three different approaches
(Equations 66, 67, and 68) were followed to determine _ values from the measured quantities. The inlet e

profiles for these cases are shown in Figure 6.3.2-5 and have been normalized by the inlet mean velocity
(Uo) and pipe radius CR3).

Overall, the major differences among the inlet dissipation profiles appeared in the peak and the centerline
regions. Comparisons of the predicted mean velocities and turbulence quantities obtained from the k-e
model with measurement are shown in Figures 6.3.2-6 through 6.3.2-9. It is noted that the use of inlet
dissipation calculated from the strain rate and shear stress resulted in higher peak and centerline veloci-

ties in upstream planes. However, the recirculation region has been better predicted as flow proceeds
towards the downstream region. There are significant differences among the calculated turbulent kinetic
energy and shear stress profiles. The main discrepancy has arisen in prediction of the maximum values
in the shear layer.

Comparisons of the predicted mean velocities and Reynolds stresses profiles using the DSM closure are

presented in Figures 6.3.2-10 through 6.3.2-13. These profiles have been normalized by the inlet velocity
and pipe radius. Above r/R3 > 0.5, the flow field is similar to plug flow created by the strong coflow.

This region is not the focus of our study and is not shown in the figures. The use of ein profiles derived

from the constant length-scale assumption (Equation 66) and the equilibrium assumption (Equation 68)
resulted in similar predictions outside the recirculation zone, However, the calculated flow field with ein

obtained from the shear stress and strain rate (Equation 67) showed somewhat different behavior. This is

related mainly to the maximum value of the inlet E, which has been changed considerably. The variations
of the ein profiles near the centefline also affect the prediction of the reverse flow region, although the

Reynolds stresses and dissipation rate are significantly smaller near the centerline, compared to the shear
region. The uncertainties in the evaluation of velocity gradients may lead to errors in ein values as well.

It must be pointed out that, in a similar nonswirling jet configuration, the flow field was found to be less

sensitive to the magnitude of kin. The differences between the ein calculated by various methods were

larger for the swirling flow case than the nonswirling case. The effects of kin on shear stress are serious
near the inlet, where the central recirculation is formed. In comparison with the data, the locations of the
maximum and minimum have been shifted in the developing region of the flow field. In the outer part of
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therecirculationzone, where the effect of coflow is more pronounced, and near the axis of symn_try,
where the velocity gradient is negligible in the radial direction, the discrepancies among the calculations
are in fact diminished. The peak values are the main differences that appear using various inlet e dis_-
butions. When the inlet e are found from Equations 66 and 68, the predicted turbulence intensity profiles
are similar to the exhibited data trend. However, a wide disparity exists between these calculations and
the calculations with ein obtained from Equation 67. The turbulent normal stresses are decreased due to

an excessive dissipation rate at the inlet. This results in an insufficient diffusion effect and therefore an
inaccurate prediction of the velocity profile.

Effects of the pressure-strain correlation model on mean and turbulence fields are also analyzed. The in-
let dissipation rate is calculated using a constant length-scale assumption (Equation 66). The relative
merits of the four different pressure redistribution models on ASM closures have been examined in detail
by Nikjooy and So (1987). Their results indicate that the inability of the second-moment closure to

correctly resolve the turbulence field could be attributed, to a large extent, to the modeling of the _ij term.
For swirling flows, the redistribution of turbulence by fluctuating pressure is bound to be different from
that for the corresponding nonswirling flows. A vast range of values have been suggested for C1 and C2

by different researchers. However, most choices of C1 and C2 gather close to the line (1 - C2)/C1 = 0.23

(Launder, 1989). For a simple shear flow in local equilibrium condition the Reynolds stresses are a func-
tion of (1 - C2)/C1 only. The original work of Naot et al (1970) neglected the return to isotropy process

(_ijl model constant). Conversely, Donaldson's proposal (1969) totally ignores the _ij2 process and just

includes a contribution from the _jl process, with a large model constant of C1 = 5. Recently, Gibson and

Younis (1986) argued that, for swirling flows, the constants for ¢ij models should be modified. They pro-
posed a simple modification of model constants, C1 = 3.0 and C2 = 0.3, a choice that emphasizes _ijl more

than _ij2- This choice is based on the observation that swirling flows are better predicted with this com-
bination. These values were used for the calculations shown in Figures 6.3.2-10 through 6.3.2-13.

Three different model constants for C1 and C2 have been examined in this study. These are C1 = 3.0 and
C2 = 0.3 (Gison and Younis, 1986), C1 = 1.8 and C2 = 0.6 (Launder, 1989), and C1 = 5.0 and C2 = 0.0

(Donaldson, 1969). The predictions of mean axial and tangential velocity profiles using these three mod-
els are shown in Figures 6.3.2-14 and 6.3.2-15. There are substantial differences between the measured
profiles and the calculations with the second model, which shows less mixing near the centerline, causing
the reverse flow to persist. There is, correspondingly, a slowing down in the diminution of the swirl ve-
locity. As a result, unrealistic recirculation length has been predicted. The mean velocity fields predicted
by the Gibson and Younis' model and Donaldson's model are almost identical and are in complete accord
with experiment near the centerline, while the swirl velocity is well predicted at most of the locations.

With a constant C2 = 0 (_ij2 = 0), the results obtained for C1 = 1.5 - 10 were all nearly the same. But with
C2 _ 0, convergence was obtained only for certain combinations of C1 and C2 satisfying (1 - C2)/C1 = 0.2

- 0.35. However, the results were different. This seems to suggest that for C2 = 0 results are insensitive to

C1, but when C2 ;_0 the combination of C1 and C2 is important. It must be pointed out that the slow part
of the pressure-strain rate term by itself did not fully account for all of the stress-component interactions.

Therefore selection of an appropriate model for _j is crucial for swirling flow calculations. A more so-

phisticated version of _j2 is the linear quasi-isotropic (QI) model (Equation 22). This model (Equation 22)
includes both the symmetric and antisy'rrunetric mean strain effects on redistribution modeling. The QI
model achieves reasonable success in thin shear flows but shows no significant advantage over the
isotropization production (IP) model to swirling fows. Comparison of mean axial velocity profiles that
resulted from the IP and QI models at location of 35 mm is shown in Figure 6.3.2-16. The solutions were
obtained for C1 -- 1.8 and C2 = 0.6. Some minor improvements are observed near the centerline. How-

ever, the QI model still gives inferior results in comparison with the Gibson and Younis' model. This in-
dicates that the additional linear terms, in the present form, did not result in superior predictions. Similar
observations were made for tangential velocity and Reynolds stress components.
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Thepredictedstress components are shown in Figures 6,3.2-17 through 6.3.2-20. Despite the significant
differences that appeared in the mean velocity fields, the Reynolds stress profiles are nearly the same.
This can be explained by noting that the momentum equations consist of the Reynolds stress gradients.

Although the stresses look similar, careful examination reveals differences in their gradients. Thus any
minor variation in the Reynolds stress gradients will result in significant changes in mean velocities. To
verify this point, a calculation was made using the Reynolds stresses obtained from one solution (C1 = 5

and C2 ffi0) and the r_w.anvelocities from another solution (C1 ffi 1.8 and C2 = 0.6). By freezing the stress-
es' field and solving only the momentum equations, the velocity field corresponding to C1 ffi5.0 and C2 =

0 was obtained. This clearly shows that the differences in the Reynolds stress gradients are responsible
for differences in the velocity field.

Comparisons of the mean and turbulencequantitiespredicted by the ASM and DSM closures with the

measured values are p_nted in Figures 6.3.2-21 through 6.3.2-24. The results have _ shown for four
streamwise locations, namely, x = 15, 25, 35, and 50 ram. The pressure redistribution model used for

these calculations involved only the return-to-isotropy part (_ij2 = 0) with a constant C1 = 5.0 in the _jl
model. In general, the results of the ASM and DSM are very similar in the near field (x _-15 mm). At sub-

sequent downstream locations, there are substantial differences between the two models in the prediction
of centerline velocity and the recirculation length. Use of the ASM promotes earlier decay of the centeri
line velocity relative to the DSM and fails to display the size of the experimental recirculation zone. The

reason is attributed to the turbulent diffusion process, which depends on the Reynolds stress gradients.
Despite the fact that the predicted normal stresses look similar, their gradient profiles are different. In the
outer flow region, the ASM and DSM predict similar axial velocity distributions. With regard to the
comparison between measurements and calculations, the predictions by ASM seem to he slightly better

than DSM for tangential velocity. Examination of the calculated u 2 profiles indicates that the ASM's re-

suits mimic the experimental data better as flow proceeds toward the downstream region. The maximum
turbulence intensity predicted by both models is very close and is slightly underpredicted by both models
only at x = 25 mm. As regards the turbulent shear stresses, uv and uw, the calculated profiles are similar
to the exhibited data trend. The measurement shows a constant increase of the uw values near the center-

line from x = 15 mm to x = 75 mm, except at x = 25 ram. This sudden change is considered to be an exper-
imental error. Overall, the shear stresses were qualitatively well predicted and their behaviors are in

agreement with the measured profiles, although the maximum values Were Shifted slightly. In general,
apart from the centerline velocity profile, the ASM closure performed a reasonable job in predictions of
the tangential velocity and Reynolds stress components.

The present study serves to illustrate three very important points in the development of turbulence clo-
sures for calculation of complex swirling flows. First, the inlet e profile was found to be highly influential
on the stress field prediction. The mean velocity field, to some extent, is affected by the choice of ein es-
pecially in the recirculation zone. Second, the model assumptions for the pressure-strain correlations are

not very satisfactory and need improvement. The retum-to-isotropy part of the _ij by itself could predict
important features of the flow. However, the rapid part, Oij2, was found to be influential for swirling

flow, and the emphasis should be placed on developing a better combination of 0ijl and 0ij2. Finally, the
ASM closure appeared to he unsuitable for prediction of the central recirculation zone. The ASM applica-
tion, however, resulted in good tangential velocity and stresses profiles. In general, for such cases, a DSM
closure is more suitable.
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6.4 COAXIAL JETS

6.4.1UnconfinedCoaxiallets

For the present study, an unconfined flow configuration was selected, operating with an axial jet injector
surrounded by a nonswirling annular jet, as shown in Figure 6.4.1-1. In this configuration, the injector

was directed vertically downward within a 457 mm 2 wire mesh screen. The flow conditions used for the

case considered are given in Table 6.4-I. The jet center (diameter, D ---24.1 ram) is surrounded by an an-
nular jet with the inner and outer diameters of 29 mm and 36.7 mm, respectively. The effective area ratio
and axial velocity ratio ofihe annular jet to the center jet are 0.87 and 1_, respectively. Data were ob-
tained at eight axial stations 2, 15, 25, 35, 50, 75, 150, and 300 mm from the exit plane of the injector. At
each axial station, between 10 and 20 radial points were scanned as determined by the desired level of
profile resolution.

The computations for coaxial jets can be _de using a parabolic marching procedure if the radial pressure

gradients are small. Such a situation occurs if velocities in the two streams are comparable or the inner
streams are faster and if the swirl is weak. However, if the swirl is strong and/or the outer stream is sig-
nificantly faster, the radial pressure gradients become significant and a region of reverse flow develops.
The ultimate goal is to extend this study to swirling flow analyses. Therefore, a calculation procedure
based on elliptic flOWSWas used. The discretizati0n equations are o-btained using a control volu_ ap-
proach (Patankar, 19_). Three different numeriol schemes were tes_ for _convection and diffusion
terms in_ transportequations.The schemes used arethehybri_scheme_atan_r, 1980),thepower-

law differencingscheme (Patankar,1980),and theflux-splinedifferencingscheme (Varejao,1979).

A calculation procedure for elliptic flow requires boundary conditions on all boundaries of the computa-
tional domain. Four kinds of boundaries need consideration, namely, inlet, axis of symmetry, outlet, and
the entrainment boundary. At the inlet boundary, which was located at the first measurement plane, the
measured profiles of U and V were prescribed. The k-profile was obtained from the measured Reynolds
stresses. These profiles are shown in Figure 6.4.1-2. This kinetic energy distribution and the measured
shear stress profile were used to derive the _ values at the inlet plane through the following relationship

(69)

Table 6.4-I.

Unconfined coaxial jets experimental conditions at 2 mm downstream of pipe exit.

Parameter
Single- Particle-laden flow

phase flow Air Particles

Inner jet
Ccnterline velocity (m/s)
Density, pl (kg/m 3)

Mass flow rate, ml (kg/s)
Reynolds number, Re = 4ml/r_lD*

Ratio of particle-to-gas mass flow rate, LR
Annular jet

Maximum velocity (m/s)

Density, pl (kg/m 3)

Mass flow rate, m2 (kg/s)

4.64 4.76 4.20

1.178 1.178 2500.0
0.0021 0.0021 0.00042

6OOO 6OOO

0.2

6.60 6.60

1.178 1.178
0.0033 0.0033

*D = 0.0241 m
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At the axis of symmetry, the radial velocity and the radial gradients of other variables are set to zero. At
the outlet, axial diffusion is neglected for all variables. Along the entrainment boundary, which was

placed sufficiently far from the axis of symmetry, the quantity (rV) was assumed constant. In addition,
the axial velocity U was assumed zero and k and _ were assigned arbitrarily low values yielding an eddy

viscosity, _t = 10_

The computational mesh used for all calculations consisted of 76 x 69 nonuniformly distributed grid
points in the axial (x) and radial (r) directions (Figure 6.4.1-3). The tabulated x and r grid coordinates are
shown in Table 6.4-II. A finer grid spacing was used near the inlet, centerline, and in the shear layer. The

computational domain extended from the first measurement plane, located downstream of the nozzle exit
at a distance of 2.0 ram, to 40 inner jet diameters downstream of the nozzle exit. In the radial direction,
the entrainment boundary was placed at a distance of six jet diameters from the axis of symmetry. The

convergence criterion used to terminate the iterations was the absolute sums of the mass and momentum

residuals at all internal grid points, normalized by inlet mass and momentum fluxes, less than 5 x 10 -3.
The numerical results were obtained using two turbulence models with various differencing schemes.
The calculated mean and turbulence quantities are compared with the measurement at selected stations.

6.4.1.1 The k-I_Turbulence Model

The effect of different discretization schemes is shown by comparing the predicted axial velocity profiles
at three streamwise locations, namely, x = 15, 35, and 75 mm. The velocity profiles are presented in Fig-
ure 6.4.1-4. It is noted that, except for some minor differences, all three schemes for the convective terms
yield nearly identical results. In earlier studies (Patankar et al, 1987; Varejao, 1979), it was shown that in
the region of high Peclet number the flux-spline results are more accurate than those from the power-law
scheme. The fact that for the present situation there are no significant differences between results from
these schemes indicates that the results are grid independent. The differences between the hybrid and the
power-law schemes are attributed to the different treatments of the diffusion terms. The computed re-
sults at the selected axial stations compare reasonably well with the experimental data. The computations
consistently show sharper gradients than the experiment at the points of the maximum and minimum

velocity.

Figure 6.4.1-5 shows the kinetic energy profiles at three axial locations. The experimental kinetic energy
profiles were derived from the measured Reynolds stresses. In these figures, results from the power-law
scheme and the flux-spline scheme have been shown. Again, the two sets of computations are in close
agreement with each other. Most of the differences are seen in the regions of steep gradients where the
flux-spline results are expected to he more accurate. The agreement between the predicted and experi-
mental values of kinetic energy is not as good as that for the axial velocity. Even though the trends are
similar, the predicted kinetic energy levels are smaller than those derived from the measurements.

Since the present calculations are essentially free of numerical diffusion, the discrepancies between the
experimental data and the predictions can be attributed to two sources, improper boundary conditions at
the inlet plane and the deficiencies of the turbulence model. As regards the inlet conditions, all quantities
except the dissipation rate were prescribed from the experiment. The _ values, however, were derived
from the measured shear stresses and the mean velocity gradients. The uncertainties in the measure-
ments and in the evaluation of the velocity gradients may lead to errors in the ¢ values which would ad-

versely affect the calculations at downstream locations.

Numerical experiments indicate that the inlet _ profile is the single most important factor in predicting
the maximum values of mean and turbulence quantities, provided a reasonable inlet kinetic energy dis-
tribution is available. To study the sensitivity to inlet e profile, calculations were also made using an al-
ternative _ distribution, which were derived from the turbulent kinetic energy and an assigned length
scale distribution (3% of the radius). The inlet E profiles for both cases are shown in Figure 6.4.1-6. The
major differences between these two conditions are near the centerline region, however, the peak values
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Table6.4-II.
Confined coaxial iet_ grid definition,

STREA_4ISE COORDINATES OF THE GRID

I DX

1 O.O00E+O0

2 i.0_o_-o3
3 2.200E-03

4 2._01_-03

5 2.600E-03

6 2.800E-03

7 3.075E-03

8 3.550E-03

9 4.225E-03

10 4.950E-03

11 5.550E-03

12 6.000E-03

13 6.475E-03

14 6.950E-03

15 7.175E-03

16 _225E-03
17 7.275E-03

18 7.300E-03

19 7.300E-03

20 7.300E-03

21 7.300E-03

22 7.300E-03

23 7.300E-03

24 7.300E-03

25 7.300E-03

26 7.300E-03

27 7.300E-03

28 7.300E-03

29 7.300E-03

30 7.300E-03

31 7.300E-03

32 7.300E-03

33 7.300E-03

34 7.300E-03

35 7.300E-03

36 7.300E-03

37 7.300E-03

38 7.300E-03

39 7.300E-03

40 7.300E-03

41 7.300E-03

42 7.300E-03

43 7.300E-03

44 7.300E-03

45 7.300E-03

46 7.300E-03

47 7.350E-03

48 7.575E-03

X XU

O.O00E+O0

1.050E-03

3.250E-03

5.650£-03

8.250E-03

1.105E-02

1.412E-02

1.767E-02

2.1gOE-02

2.685E-02

3.240E-02

3.840E-02

4.487E-02

5.182E-02

5.900E-02

6.622E-02

7.350E-02

8.080E-02

8.810E-02

9.540E-02

.027E-0]

,100E-01

.173E-01

.246E-01

.3|9E-01

.392E-01

.465E-01

.538E-01

.611E-01

.684E-01

.757E-0]

.830E-01

.903E-01

.976E-01

2.04gE-01

2.122E-01

2.195E-01

2.268E-01

2.341E-01

2.414E-01

2.487E-01

2.560E-01

2.633E-01

2,706E-01

2.779E-01

2.852E-0]

2.g25E-01

3.001E-Ol

O.O0oE*O0

O.O00E+O0

2.100E-03

6.900E-03

9.600E-03

1.250E-02

1.575E-02

1.960E-02

2.420E-02

2.950E-02

3.530E-02

4.150E-02

4.825E-02

5.540E-02

6.260£-02

6.985E-02

7.715E-02

8.445E-02

9.175E-02

9.905E-02

1.063E-01

1.136E-01

1.209E-01

1.282E-01

1.355E-01

1.428E-01

].501E-O1

1.574E-01

1.647E-01

1.720E-01

1.793E-01

1.866E-01

1.939E-01

2.012E-01

2.085E-01

2.158E-01

2.231E-01

2.304E-01

2.377E-01

2.450E-01

2.523E-01

2.596E-0t

2.670E-01

2.742E-01

2.815E-01

2.888E-01

2.962E-01
PART 10F3
TE92-1246
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Table 6.4-II (cont).

49 7.875E-03

50 8.000E-03

51 8.000E-03

52 8.000E-03

53 8.500E-03

54 9.500E-03

55 1.000E-02

56 1.000E-02

57 1.250E-02

58 1.750E-02

59 2.000E-02

60 2.000E-02

61 2.000E-02

62 2.000E-02

63 2.250E-02

66 2,750E-02

65 3.000E-02

66 3.000E-02

67 3.250E-02

68 3.750E-02

69 4.000E-02

70 4.000E-02

71 6.000E-02

72 4.000E-02

73 4.000E~02

7_ 4.000E-02

75 5.000E~02

76 3.000E-02

3 080E-01

3 160E-01

3 240E-01

3 320E-01

3 405E-01

3 500E-01

3 600E-01

3 700E--01

3 825E-01

4 000E-01

4.200E-01

4.400E-01

4.600E-01

4.800E-01

5.025E-01

S.300E-OI

5.600E-01

5.900E-01

6.225E-01

6.600E-01

7.000E-01

7.600E-01

7.800E-01

8.200E-01

8.600E-01

9.000E-01

9.500E-01

9.800E-01

3.040E-01

3.120E-01

3.200E-01

3.280E-01

3.360E-01

3.450E-01

3.550E-01

3.650E-01

3.750E-01

3.900E-01

4.100E-01

4.300E-01

4.500E-01

4.700E-01

4.900E-01

5.150E-01

5.450E-01

5.750E-01

6.050E-01

6.400E-01

6.800E-01

7.200E-01

7.600E-01

8.000E-01

8.400E-01

8.800E-01

9.200E-01

g.8OOE-OI

TRANSVERS COORDINATES OF THE GRID

5

6

7

8

9

10

11

12

13

14

15

16

J DY Y YV

1 0.000E+00

2 3.750E-04

3 7.500E-04

4 8.750E-04

1.000E-03

1.000E-03

1.000E-03

1.000E-03

1 O00E-03

1000E-03

1000E-03

1 O00E-03

1 O00E-03

8 750E-04

6.250E-04

5.000E-04

O.O00E÷O0

3.750E-04

1.125E-03

2.000E-03

3.000E-03

4 O00E-03

5 O00E-03

6 O00E-03

7 O00E-03

8 O00E-03

9 O00E-03

1 O00E-02

1 100E-02

1 187E-02

1.250E-02

1.300E-OZ

0.000E+00

0.000E+00

7.500E-04

1.500E-03

2.500E-03

3.500E-03

_.500E-03

5.500E-03

6.500E-03

7.500E-03

8.500E-03

9.500E-03

1.050E-02

1.150E-02

1.225E-02

1.275E-02 PART2OF3
TE92-1246
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Table6.4-II(cont).

17 5.000E-04 1.350E-02

18 6.250E-04 1.412E-02

19 8.750E-04 1.500E-02

20 1.000E-03 1.600E-02

21 _.oooE-o3 1.7ooE-o2
22 1.000E-03 1.800E-02

23 1.000E-03 1.900E-02

24 9.800E-04 1.998E-02

25 1.067E-03 2.103E-02

26 1.300E-03 2.233E-02

27 1_63E'03 2.389E-02

28 1.735E'03 2.562E-02

29 1.875E-03 2.750E-02

30 1.995E-03 2.950E-02

31 2.i00E-03 3.159E-02

32 2.192E-03 3.379E-02

33 2.275E-03 3.606E-02

34 2.353E-03 3.841E-02

35 2.625E-03 6.084E-02

36 2.495K-03 4.333E-02

37 2,557E-03 6.589E-02

38 2.615E-03 4.851E-02

39 2.672E-03 5.118E-02

40 2.725E-03 5.390E-02

41 2.777E-03 5.668E-02

42 2,830E-03 5.951E-02

43 2.877E-03 6.239E-02

44 2.922E-03 6.531E-02

45 2.967E-03 6.828E-02

46 3.010E-03 7.129E-02

47 3.050E-03 7.434E-02

48 3.090E-03 7,743E-02

49 3.128E-03 8.056E-02

50 3.165E-03 8.372E-02

51 3.205E-03 8.693E-02

52 3.240E-03 9.017E-02

53 3.272E-03 9.344E-02

54 3.313E-03 9.675E-02

55 3.357E-03 1.001E-01

56 3.390E-03 1.035E-01

57 3.400E-03 1.069E-01

58 3.425E-03 1.103E-01

59 3.475E-03 1.138E-01

60 3.500E-03 1.173E-01

61 3.500E-03 1.208E-01

62 3.525E-03 1.243E-01

63 3.575E-03 1.279E-01

64 3.625E-03 1.315E-01

65 3.650E-0_ 1.352E-01

66 3.650E-03 1.388E-01

67 3.700E-0_ 1.425E-01

68 4.675E-03 1.472E-01

69 2.800E-03 1.500E-01

1.325E-02

1,375E-02

1.450E-02

1.550E-02

1.650E-OZ

i.750E-02

1.850E-02

1_950E-02
2.046E-02

2\159E-02

2.306E-02

2.472E-02

2.653E-02

2.847E-02

3.052E-02

3.267E-02

3.690E-02

3.722E-02

3.961E-02

4.207E-02

4 460E-02

4.7i9E-02

4.983E-02

5.253E-02

5.528E-02

5.808E-02

6.094E-02

5.384E-02

6.678E-02

6.977E-02

7.280E-OZ

7.587E-02

7.898E-02

8.213E-02

8.531E-02

8.856E-02

9.179E-02

9.508E-02

9.842E-02

I 018E-01

1 052E-01

1 086E-01

1 120E-01

1 155E-01

1 190E-01

1.225E-01

1.261E-01

1.297E-01

1.333E-01

1.370E-01

1.406E-01

1.644E-01

1.500E-01
PART3 OF3
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are about the same. The predicted results of mean axial velocity and turbulent kinetic energy at an axial
location of 15 mm are shown in Figure 6.4.1-7. The results show that the turbulent kinetic energy has de-

creased due to an excessive inlet dissipation rate in the inner region. On the other hand, the mean veloc-
it3, is not affected significantly. This can be attributed to the fact that the maximum value of the inlet e in
the annular region has not been changed considerably.

6.4.1.2 The Algebraic Second-Moment Closure

In this section, the predictions using the ASM have been compared with those from the k-e model. Simi-
lar to the trends observed in the k-¢ model calculations, the effect of various discretization schemes on the
ASM results was found to be rather insignificant. Consequently, results from different schemes will be
shown only for some cases. The predicted mean axial velocity profiles from the ASM and k-e models

have been compared in Figure 6.4.1-8. These results were obtained using the flux-spline discretization
scheme. The use of ASM improves the overall agreement between the predictions and the experimental

data. The major differences between the two turbulence models are seen in the regions where a maxima
or a minima occurs in the velocity profiles.

The predicted turbulent shear stress from the ASM has been compared with the experimental data in Fig-
ure 6.4.1-9. Here, results from the power-law differencing scheme have also been included to assess the
numerical accuracy of the results. Both discrefization schemes give nearly identical results, indicating
that the solution is grid independent. The positive peak in the shear stress profile corresponds to the
shear layer between the two streams and the negative peak corresponds to the shear layer associated with
the expansion. The agreement between the calculation and the experimental data is good, although the

peak values are not well predicted.

The normal stresses at different axial locations are shown in Figure 6.4.1-10. Again, results from both the
power-law and flux-spline schemes have been included. The two schemes perform essentially to the
same level except for minor differences in the peak values. The differences between the calculated and
experimental results are most significant in the case of the normal stresses. The experimental data indi-
cate a faster mixing within the shear layer is predicted by the model.

Comparisons of the radial and tangential Reynolds stress components with the measurements are pre-

sented in Figures 6.4.1-11 and 6.4.1-12. Essentially, the same trends are observed for v 2 and w 2 profiles.

The peak values of the w 2, however, are reported higher. Such behavior has been correctly predicted by

the ASM calculation. In addition, the maximum values are overpredicted for u 2, underpredicted for v2,

and closely predided for w 2. This clearly indicates the lack of performance of the pressure-strain model.
One reason for this could be that the constant C2 used is not suitable for complex turbulent flows. Since

C2 is determined from simple turbulent flows in local equilibrium, it would be more appropriate for

equilibrium ASM than for nonequilibrium ASM. Another reason could be the incorrect modeling of the
mean strain part of the pressure-strain term. It is very important to model the mean strain tensor
correctly. Either the mean strain effects are not modeled at all or they should be accounted for properly
(Nikjooy and So, 1987). Near the centerline region, substantial differences are observed between the
model predictions and the experimental data. The discrepancies are attributed to inaccurate anisotropic
diffusivity in momentum as well as k and ¢ equations, an improper model used for the pressure-strain
term, and the shortcoming of the algebraic stress model in predicting the normal stress components.
Overall, the algebraic stress model can do abetter job of predicting the shear stress components than the
normal stresses.

Numerical calculations were also performed starting from 15 mm downstream of the nozzle exit where
no reverse flow occurred. This allowed the application of parabolic calculations with very fine grid to
achieve numerically accurate solutions. The experimental profiles of mean and turbulence quantities at x
= 15 mm were used as initial conditions for the parabolic calculations. The inlet turbulence dissipation
rate profile was derived from Equation 69.
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Thek-¢turbulencemodelwasappliedfirst forasingle-phasecoaxialjetcalculationtoestablishthesuit-
ability of the model before introducing two-phase effects. The predicted mean axial velocity, turbulent
kinetic energy, and shear stress profiles at th(. various axial stations, 15 (inlet plane), 25, 35, 50, 75, 150,
and 300 ram, are shown in Figure 6.4.1-13 an, ! have been normalized by the inner jet pipe radius and local
centerline velocity.

The k-e model yields good overall agreement with velocity measurements, however, the discrepancies are
high for the kinetic energy distribution. The underpredicted values of the kinetic energy of turbulence
are more obvious in the regions where the flow changes rapidly, in the developing shear layer between
the two jets (first region) and where the shear layer reaches the centerline (second region).

In the first region, the mixing layer between the two flows produced by the inner and outer streams is
changing from a thin layer characterized by a high shearstress to a self-similar shear flow where the

shear st_s is relatively small, in _th _ions, the flow possesses two Significant ra_f_train compo-
nents resulting from the velocity gradients in both the axial and radial directions. This type of flow is
classified as complex shear flow, which is difficult to predict by using the standard version of the k-(
model.

The distribution of the turbulent shear stress and its dependence on the mean velocity gradient are also
shown in Figure 6.4.1-13. According to the eddy-viscosity hypotheses, the sign of the shear stress and the
velocity gradient is clearly consistent across the flow field, The positive shear stress inthe inner jet region
indicates that theflow sfi|l bears the characteristics of the upstream pipe flow, the gradient of mean axial
velocity is still negative but approaching zero. The distribution of k and uv reach their more familiar
shapes (as in a single free jet) when the mixing takes place across the entire flow and the mean axial ve-
locity gradient becomes negative across the entire jet.

The gas-phase rms velocities are shown in Figure 6.4.1-14. It is assumed that turbulent kinetic energy re-
distributes with u 2 = k, v2 = w 2. The shapes of tl_e three components have maximum values just behind

the nozzle wall and minimum values at the central axis. But in the farther downstream region where the
mixing layer merges with the central axis, the rms profiles take a uniform shape like that observed in fully

developed jet flows. Figure 6.4.1-14 also shows that the radial rms velocity component, v 2, has almost the
same value of the axial component.

The k-¢ model is extended to particle-laden jets' situations. The mass loading, defined as the ratio of par-
ticle-to-gas mass flow rate of the inner jet at the inlet plane, LR = 0.2, was considered. To distinguish be-
tween the effects of mean and fluctuating gas velocity on particle transport, predictions were compared
using ST and DT treatments to the measured data.

Figure 6.4.1-15 presents the mean axial velocity, kinetic energy, and shear stress of the carrier phase. The
high velocity of the external stream, compared to that of the central jet, causes a rapid increase in the axial
velocity of the inner jet downstream of the exit plant. Because of this transfer of mass and momentum
from the external to the internal stream, the carrier-phase velocity distribution where the particles exist

becomes different from that of the axisymmetric jet flow case. This change in air velocity affects particle
velocity, which is discussed in connection with Figure 6.4.1-15.

The present particle loading is fairly small in terms of altering the carrier-phase flow field (Mostafa and
Mongia, 1988). However, comparison of the last two planes in Figure 6.4.1-15 with those of Figure 6.4.1-
13 shows some reductions in turbulence kinetic energy and shear stress in the near centerline region
where the particles exist. This turbulence modulation is caused mainly by the fluctuating relative velocity
between the particles and the carrier phase. Particles generally cause a reduction in gas turbulence and

an increase in the dissipation rate of that energy. This phenomenon was simulated in the present study
by introducing extra terms into the turbulence kinetic energy and its dissipation rate equations. Increas-
ing the particle loading increases the turbulence modulation, as recently measured by Fleckhaus et al
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(1987).Figure 6.4.1-15 shows that the present mathematical mode] yields fairly good agreement with the
experimental data.

Figure 6.4.1-16 presents the measured values of the three components of fluctuating velocity of the carder
phase when glass beads are present. The effect of the particles on the radial and azimuthal components is
higher than that on the axial component. This condition may be attributed to the differences in the mean
velocity strain profiles and to the small ratio of particle-to-gas velocity fluctuation. According to Fleck-
haus et a! (1987), the smaller the ratio of particle-to-gas veloc/ty fluctuation, the higher is turbulence at-
tenuation. This observation supports the postulate that particles increase the level of anisotropy and
shows the need for detailed measurements of mean and fluctuating components of the two phases under
different flow conditions.

Figure 6.4.1-17 presents the data of the mean axial particle velocity. It also compares the predictions of
the ST and DT treatments to the experimental data. The mean particle velocity profile is uniform over the
entire cross section of the flow field. This behavior is different from that observed in round jet flow mea-
surements and could be attributed to rapid mixing between inner and outer jets, which subject the parti-
cles to a more uniform gas velocity distribution. This jet mixing process creates a strong negative radial
velocity in the jet's outer region and causes the particle-number density to become narrower than the cor-
responding profile for axisymmetric round jet flows. Figure 6.4.1-17 also shows that the ST provides
good predictions compared to the experimental data, whereas the DT performs quite poorly at the
downstream stations. That is, a particle moves radially because of its initial mean radial velocity and/or
the mean radial gas velocity, both of which are very small compared to the axial component. This effect
explains the narrow distribution of particle mean axial velocity and number density predicted by DT.

Figure 6.4.1-18 presents the measurements of the three components of fluctuating particle velocity and
indicates the extent to which ST allows reasonable calculations. Although DT ignores these components
entirely, ST simulates these particle-velocity fluctuations as a response to the carrier-phase components.
The agreement between predictions and data is less than satisfactory at the last station, which could be
attributed to the limitations of the assumptions embedded in the ST formation. Figure 6.4.1-18 also shows
the high anisotropy of particle turbulent quantities that increase the anisotropy level of the carrier phase
discussed in the analysis of Figure 6.4.1-16.
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6.4.2 Confined Coaxial lets

In this section comparison of computational results with data is presented for coaxial flow with and with-
out particle beads. For the present study, a confined flow configuration was selected. In this configura-
tion, the injector was directed vertically downward. The experimental test parameters are summarized in
Table 6.4-I_, and the sketch of the test section is shown in Figure 6.4.2-1.

The set of governing partial differential equations apply for nonswirling continuous (carrier) phase flow
consist of equations for continuity, axial (x) and radial (r) momenta, ¢, and four Reynolds stress compo-
nents. The finite volume approach (Patankar, I980) is used to reduce the continuous equations to a set of
coupled discrete equations. The numerical solutions are obtained using the flux-spline differencing
scheme (FSDS) (Varejao, 1979).

The elliptic nature of transfer equations requires that boundary conditions be specified on the four sides
of the solution doma_fn. Fourk_n_boundaries, inlet, axis of symmetry, wall, and the outlet, need con-
sideration. At the inlet boundary, which is located at the first measurement plane (x = 4 ram), the mea-

sured profiles of U, V, W, u2, v 2, w 2, and Uv are applied. The inlet dissipation rate is prescribed based on

the assumption of constant length scale and the turbulent kinetic energy, namely

(70)

where R3 (R3 = 76 mm) is the pipe radius. The macrolength scale of 0.2 R3 was estimated through the
sensitivity analysis.

At the axis of symmetry, the radial velocity, shear stresses, and the radial gradients of other variables are
set to zero. All streamwise gradients are presumed zero in the exit plane of the calculation domain except
for axial velocity which needs to be corrected to satisfy integral mass balance. The conventional loga-
rithmic law, which is based on the local equilibrium assumption, is applied to determine the wall shear
stress component. The shear stress is then used as the boundary condition for U momentum and uv
equations. The boundary conditions for normal stresses are imposed through the modifications of their
production terms using the new calculated wall shear stress value.

Table 6.4-III.

Confined coaxial iets experiment,d conditions at 4 mm downstream 9f nozzle exit.

Continuous phase
Medium

Density, r
Inner jet mass flow rate, ml
Annular jet mass flow rate, m2

Dilute jet mass flow rate, m 3

Averaged velocity of inner jet, Uo

Discrete phase
Medium

Density, rp

Beads diameter, Dp
Centerline velocity
Centerline beads rate
Mass flow rate

Mass loading beads to air, LR

Air

1.17 Kg/m 3

0.0021 gg/s

0.0033 kg/s
0.0272 kg/s
3.935 m/s

Glass beads

2500 kg/m 3
105mm

4.2 m/s
90 1/s

0.00193 kg/s
0.925

Z

_r
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The coupled equations and boundary conditions are solved numerically in a sequential manner using the

staggered grids for velocities and shear stresses. The main advantage of staggering the locations of
stresses is to enhance the numerical stability, a result of high coupling between the shear stresses and re-
lated mean strains. The iteration sequence employs the SIMPLER algorithm (Patankar, 1980) to handle
the coupling between the continuity and momentum equations. The algebraic equations are solved using
a line-by-line TDMA.

The ordinary differential equations describing the dispersed phase are solved using forward numerical
integration. The calculations start from the first measurement plane (x = 4 mm) where the mean and
fluctuation velocity profiles of particles and their rates of injection are available. At the wall, particles are
assumed to bounce back with an angle of reflection equal to the angle of incidence.

Numerical iterations are performed over the continuous and dispersed phases until the absolute sums of
the normalized mass and momentum of the carrier phase at all internal grid points, and the change of the

particle source terms, are less than 10-5 .

A nonuniform grid of 61 x 57 in the axial and radial directions is used for continuous phase calculations
(Figure 6.4.2-2). A finer grid spacing is assigned near the inlet, centerline, and in the shear layer. The
computational domain extends from the first experimental location (x = 4 mm) to 300 mm downstream of
the jet exit. Since the measured flow does not show any x dependence at x > 250 mm, the specified condi-
tion O/0x = 0 at the exit plane of the calculation domain is reasonable. The discrete phase calculation also
starts from the same axial location, i.e., x = 4 mm. Four thousand particles distributed at forty radial loca-
tions are used for ST treatment.

The present calculations have been made using the flux-spline differencing scheme and the calculated re-
sults are essentially free of numerical diffusion. Therefore, the discrepancy between the experimental
data and the prediction can be attributed to two sources, improper boundary conditions at the inlet plane
and the deficiency of the turbulence model. As regards the inlet conditions, all quantities except the dis-
sipation rate (e) were prescribed from the measurement. These profiles are shown in Figure 6.4.2-3 and
have been normalized by the inner jet averaged velocity (Uo) and the pipe radius (R3). Above r/R3>0.5,
the flow field is similar to plug flow condition created by the strong coflow. This region is not the focus
of the study and has not been shown in the presented figures. The uncertainties in the derivation of inlet

profile would adversely affect the calculation at downstream locations. It was shown, however, that the
use of inlet e derived from the constant length-scale assumption can result in a better prediction (Nikjooy
and Mongia, 1991).

Comparison of the normalized axial mean velocity profiles for single-phase flow with experimental data
along the streamwise direction is presented in Figure 6.4.2-4. These results were obtained from the k-e

model. The predictions are in very good agreement with measured values. There are some discrepancies
near the maximum flow region which can be due to the higher radial diffusion process. The flow dis-
charging from the inner pipe has a fiat velocity profile which decelerates gradually due to the pressure ef-
fects. Comparisons of the turbulent shear stress and kinetic energy are shown in Figures 6.4.2-5 and 6.4.2-
6. The k-¢ model overestimated the maximum level of the turbulent kinetic energy near the nozzle exit,
however, the agreement between the calculated shear stress and data is excellent. It seems that the over-
predicting of turbulent kinetic energy in the upstream region resulted in higher effective diffusion, which
is responsible for underestimating the peak velocities. At about x = 150 mm both flow streams have been
completely mixed. The agreement between the predicted and experimental values of kinetic energy is not
as good as that for the axial velocity. Even though the trends are similar, the predicted kinetic energy is
smaller than that derived from the measurements in downstream regions.

Comparison of the mean and turbulence quantities by the DSM closure with the measured values is pre-
sented in Figures 6.4.2-7 through 6.4.2-11. The predicted mean velocity profiles are in excellent agreement
with the data. The peak and centerline velocities were very well predicted. The pressure-strain correla-
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tionmodelusedforthesecalculationsis just based on the return-to-isotropy model (C1 = 5.0, C2 -- 0.0).

The differences between the calculated and experimental results are most significant in the case of the
normal stresses. The maximum axial turbulence intensity has been overpredicted in most of the flow re-
gion, however, the trend was accurately predicted. This behavior resulted in underprediction of the
maximum values of other rms components, especially the radial fluctuation. Essentially, the same trends
are observed for radial and tangential stress components. The discrepancies between the model and data
clearly indicate the lack of performance of the pressure-strain model. One reason for this could be the
lack of an appropriate model for the "rapid part" which was not considered here. The turbulent shear
stress was accurately predicted. The negatiw: peak in the shear stress profile corresponds to the shear
layer between the two streams and the positive peak corresponds to the shear layer associated with the

expansion. _

Comparisons of the normalized mean axial velocity and Reynolds stress predicted by DSM and ASM clo-
sures with the measured values are presented in Figures 6.4.2-12 through 6.4.2-16. The calculated velocity
fields predicted by both models are very similar at downstream locations. Some differences are observed
between the two models in the maximum an3 expansion zones at upstream regions. Overall, the ASM

prediction is in good agreement with data. Examination of the calculated rms profiles indicates that the
DSM's results mimic the experimental data better at all stations. A wide disparity exists between the
measured normal Reynolds stresses and the ASM's results, especially in the peak zone. As regards the
turbulent shear stress, the ASM underpredicted the maximum and minimum data points in upstream lo-
cations. The predicted turbulent kinetic energy by the k-c, DSM, and ASM (Figure 6.4.2-17) shows that
the DSM simula_ the data better than other models. ............

The calculation for a particle-laden jet was also performed over the same computational domain and the
same grid distribution was used. The inlet conditions, except the dissipation rate (e) were specified from
the experimental data. These profiles are sho_ in Figure 6.4.2-18 and have been normalized by the inner
jet averaged velocity (Uo), particles flux at the centerline (No), and the pipe radius (R3). The_nlet dissipa-

tion rate is prescribed based on the assumption of constant length scale and the turbulent kinetic energy.

The normalized axial component of mean velocity by DSM at different streamwise locations is show n in
Figure 6.4.2-19. The predicted result is in excellent agreement with the experimental data. The velocity
profiles are quite fiat near the centerline. The measurement shows that the centefline velocity initially de-
creases about 10% from the inlet plan to station x = 25 mm. The deceleration in axial velocity probably
results from the pressure effect. The predicted pressure distribution shows a negative radial gradient fa-
voring an outward motion of the flow. As a result, the axial velocity is slowing down to satisfy the mass
conservation. The centerline velocity at subsequent streamwise locations then increases, indicating the
momentum transfer from the annular jet to the core region. It should be mentioned that the choice of
model constants in the pressure redistribution term has been found to be effective especially on the turbu-
lence field (Nikjooy and Mongia, 1991). The case of coaxial jets was also calculated for C1 = 1.5 and C2 =

0.6 in the _ij model. The prediction however was in large discrepancy with the data.

Comparisons of the normalized rms velocity components predicted by DSM closure with the measured
values are presented in Figures 6.4.2-20, 6.4.2-21, and 6.4.2-22. Near the injector exit, e.g. x<15 mm, the
axial rms peaks at two radial locations correspond to the sharp decrease in the mean velocity. The pro-
duction of turbulent kinetic energy is increased at these locations, consistent with the maximum turbulent

intensity profiles observed in the measurement. Overall, the calculated qu 2 profiles are in good agree-
ment with the data. The peak values are slightly overpredicted at some locations. This behavior resulted
in underprediction of the maximum values of other rms components, especially the radial fluctuation.
The discrepancy observed in the turbulence field between the prediction and the measurement is related

in large to the deficiency of the pressure-strain model. The turbulence quantities however were all well
predicted near the centerline. At downstream locations, turbulent intensifies are relatively uniform
across the pipe, indicating a well-mixed flow condition. As regards the turbulent shear stress, uv, the cal-
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culatedprofilesareverysimilarto thedatabehavior(Figure 6.4.2-23). The results demonstrate that the

dispersed phase had no significant effects on the continuous phase.

Predicted and measured mean particle velocities along the axis are shown in Figures 6.4.2-24 and 6.4.2-25.
The calculated velocities are based on the particles' mass flow rate weighted averages. Only a portion of
the entire radial section where particles could be found are presented. The predicted axial values are in

good agreement with data. Despite the variations observed in the gas phase velocity near the centefline,
the particle velocity shows almost no change. This is related to the fact that the particle dynamic relax-
ation time (Zd) is very large compared to the turbulent characteristic time (z). The reason for large _! is

found in the large particle-to-gas density ratio (2500:1.17). This clearly shows that the inertia force is re-
sponsible for the particles' motion and the effects of drag force are marginal. The predicted profiles of
mean radial velocity of particles are in qualitative agreement with the data. The radial velocity compo-
nent however is at least one order of magnitude smaller than the axial component. It is therefore reason-

able to believe that their quantitative disagreement would not severely affect other results.

The agreements between the predicted and measured fluctuating velocities of the particles are not favor-
able in downstream locations (Figures 6.4.2-26, 6.4.2-27, and 6.4.2-28). The data show similar radial and
tangential fluctuation components. On the other hand, the axial rms value is about 15 times larger than
others. The model has successfully predicted the anisotropy feature of the dispersed flow field. How-
ever, all three components are predicted to be lower than the data. The results for the normalized particle
number density are illustrated in Figure 6.4.2-29. The reference value used for normalization is the parti-
cle number density on the centerline at the inlet plane (x = 4 nun). The predicted profiles presented here
also represent the particles' mass flow rate per unit area or mass flux. The predicted mass flux is in rea-
sonable agreement with data at upstream locations (x < 35 mm). However, the calculation shows a larger
spread of the particles at the downstream region. As a result, the particles mass flux is underpredicted in
the central region of the flow at those places. Although the gas phase was well-mixed downstream of the
flow field, the particles will tend to accumulate near the centerline. The reasons can be due to the lack of
lift force, which was discarded from the interfaciai force term.

In the present study, the Reynolds equations have been extended to calculate two-phase turbulent flow
without evaporation. The selected model used in this study is the extension of those desired for constant
density single-phase turbulent flow. Therefore, some of the discrepancies observed in the results are re-
lated to this matter. However, the errors arising from the inlet dissipation rate profile and/or the model

constants used in the pressure redistribution term should not be overlooked. Overall, the mean and tur-
bulence fields associated with the continuous phase were reasonably well predicted by DSM. The gas

appeared to be unaffected by the particles' motion. The discrete phase results are also encouraging. The
discrepancies observed in the fluctuation velocities and the mass flux profiles for the particles are more
clear in the downstream region where the carrier phase flow is well mixed. However, the particles still
tend to accumulate near the centerline region. This shortcoming may be removed by including the effects
of the lift force into the carrier phase equations.
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Figure 6.4.2-1. Confined comcbl jets - geornetrtad details.
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6.5 UNCONFINED COAXIAL JETS WITH SWIRLING ANNULAR FLOW

In this section, computations for unconfined axisymmetric swirling coaxial jets are reported. In this con-
figuration, an axial jet injector surrounded by a swirling annular jet, as shown in Figure 6.5-1, was di-

rected vertically downward within a 457 mm 2 wire mesh screen. The entire test assembly was sur-

rounded by a flexible plastic enclosure. This helped damp-out extraneous room drafts, and more impor-
tantly, allowed uniform seeding of the entrained air, thereby permitting unbiased measurements in the
outer region. Data were obtained at eight axial stations 4, 15, 25, 35, 50, 75, 100, and 150 ram from the exit
plane of the injector. At each axial station, between 10 and 20 radial points were scanned. The flow con-
ditions used for this case are given in Table 6.5-I. The center jet (diameter, D = 24.1 ram) is surrounded by
an annular jet with the inner and outer diameters of 29 and 36.7 ram, respectively. The effective area and
axial velocity ratios of the annular jet to the center jet are 0.87 and 1.8, respectively.

The control-volume approach was applied to discretize the governing equations. To minimize the effects
of false diffusion, numerical solutions have been obtained using a flux-spline scheme for the convection
and diffusion terms in the transport equations on a fine grid. The computational mesh used for all calcu-
lations consisted of 76 x 69 nonuniformly distributed grid points in the axial and radial directions. A finer

grid spacing was used near the inlet and the centerline in the shear layer and within the recirculation
zone (Figure 6.5-2). The tabulated axial (x) and radial (r) grid points are shown in Table 6.5-II. The com-
putational domain extended from the first measurement plane, located downstream of the nozzle exit at a
distance of 3.0 ram, to 40 inner jet diameters downstream of the nozzle exit.

A calculation procedure for elliptic flow requires boundary conditions on all boundaries of the computa-
tional domain. Four kinds of boundaries, namely inlet, axis of symmetry, outlet, and the entrainment
boundary, need consideration. At the inlet boundary, which was located at the first measurement plane,
the measured profiles of mean velocity and Reynolds stress components were prescribed. These profiles
are shown in Figure 63-3. The k-profile was obtained from the measured Reynolds stresses. This kinetic
energy distribution was used to derive the ¢ values at the inlet plane through the relationship

(71)
0.2 D i

where Dj is the inner jet diameter. This approach is based on the assumption of constant length scale.

At the axis of symmetry, shear stresses and radial gradients of other variables are set to zero. At the out-
let, axial diffusion is neglected for all variables. In the radial direction, the entrainment boundary was
placed at a distance of six jet diameters from the axis of symmetry. Along the entrainment boundary, the
quantity (rV) was assumed constant. In addition, the axial velocity U and tangential velocity W were as-
sumed zero. Turbulent kinetic energy and its dissipation rate were assigned arbitrarily low values yield-

ing an eddy viscosity, lit = 10 li.

Table 6.5-I.

_ned swirling coaxial _ts experirnental conditions.

Average inner velocity, m/s
Average annular velocity, m/s
Centerline velocity Uo m/s

Density r, kg/m 3

Inner jet mass flow rate, ml, kg/m 3

Annular jet mass flow rate, m2, kg/m 3

Reynolds number, Re = 4ml/pmD
Swirl angle, deg

3.9
7.1
3.93

1.178

0.0021

0.0033

5712
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Table 6.5-II.

Unconfined swirling coaxial _ts grid definition.

STREAMWISE COORDINATES OF THE GRID

I DX X XU

1 O.O00E+O0

2 7.750E-04

3 1.625E-03

4 2.050E-03

5 2.500E-03

6 2.700E-03

7 2.938E-03

8 3.313E-03

9 3.888E-03

10 4.588E-03

11 5.250E-03

12 5.775E-03

13 6.238E-05

14 6.713E-03

15 7.063E-03

16 7.200E-03

17 7.250E-03

18 7.288E-03

19 7.300E-03

20 7.300E-03

21 7.288E-03

22 7.275E-03

23 7.288E-03

24 7.300E-03

25 7.300E-03

26 7.300E-03

27 7.300E-03

28 7.300E-03

29 7.300E-03

30 7.300E-03

31 7.300E-03

32 7.300E-03

33 7.300E-03

34 7.300E-03

35 7.300E-03

36 7.300E-03

37 7.300E-03

38 7.300E-03

39 7.200E-03

40 7.200E-03

41 7.400E-03

42 7.400E-03

43 7.325E-03

44 7.325E-03

45 7.275E-03

46 7.275E-03

47 7.300E-03

48 7.450E-03

O.O00E+O0

7.750E-04

2.400E-03

4.450E-03

6.950E-03

9.650E-03

1.259E-02

1.590E-02

t.979E-02

2.438E-02

2.963E-02

3.540E-02

4.164E-02

4.835E-02

5.541E-02

6.261E-02

6.986E-02

7.715E-02

8.445E-02

9.175E-02

9.904E-02

1.063E-01

1.136E-01

1.209E-01

1.282E-01

1,355E-01

!.428E-01

1.501E-01

1.574E-01

i.647E-01

1.720E-01

1.793E-01

1.866E-01

1.939E-01

2.012E-01

2.085E-01

2.158E-01

2.231E-01

2 303E-01

2 375E-01

2 449E-01

2 523E-01

2 596E-01

2 670E-01

2 742E-01

2 815E-01

2 888E-01

2.963E-01

O.O00E+O0

O.O00E+O0

1.550E-03

3.250E-03

5.650E-03

8.250E-03

1.105E-02

1.413E-02

1.768E-02

2.190E-02

2.685E-02

3.240E-02

3.840E-02

4.488E-02

5.183E-02

5.900E-02

6.623E-02

7.350E-02

8.080E-02

8.810E-02

9.540E-02

1.027E-01

1.100E-01

1.173E-01

1.246E-01

1.319E-01

1.392E-01

1.465E-01

1.538E-01

1.611E-01

1.684E-01

1.757E-01

1.830E-01

1.903E-01

1.976E-01

2.049E-01

2.122E-01

2.195E-01

2.268E-01

2.339E-01

2,412E-01

2.487E-01

2.560E-01

2.633E-01

2.706E-01

2.779E-01

2.852E-01

2.925E-01
PART I OF3
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Table 6.5-II (cont).

49 7.775E-03 3.040E-01 3.001E-01

50 7.975E-03 3.120E°01 3.080E-01

51 8.500E-03 3.205E-01 3.160E-01

52 9.500E-03 3.300E-01 3.250E-01

53 1.000E-02 3.400E-01 3.350E-01

54 1.000E-02 3.500E-01 3.450E-01

55 1.125E-02 3.613E-01 3.550E-01

56 1.375E-02........ 3.750E-01 _]:_75_E-0|
sT :_:s_ooE_02 :_ _._b_E:O-i ..... _2gE:0i
58 1.500E-02 4.050E-01 3.975E-01

59 1.500E-02 4.200E-01 4.125E-01

60 1,500E-02 4.350E-01 4.275E-01

61 7.500E-03 6.425E-01 6.425E-01

TRANSVERS COORDINATES OF THE GRID

J DV

1 O.O00E+O0

2 2.500E-06

3 7_5o6E-o4
4 1.000E-03

5 i_OOE-03

6 _.O00E-03

7 1.000E-03

8 1.000E-03

9 1,000E-03

10 1.000E-03

11 1.000E-03

12 1.000E-03

13 i.000E-03

14 1.000E-03

15 7.500E-06

16 5.000E-04

17 5.000E-04

18 5.000E-04

19 5.000E-04

20 5.000E-06

21 5.000E-04

22 5.000E-04

23 5.000E-04

24 5.000E-04

25 5.000E-04

26 5.000E-04

27 5.000E-04

28 5.000E-04

29 7.500E-04

30 1.000E-03

31 1.000E-03

32 1.O00E-03

Y ,,,v

5.000E-04 O.O00E+O0

7.500E-04 5.000E-04

1_56_-03 1.000E-03

2._-03 2_006E-03

3. 500E-03 _600E'03

4.SooE-o3 4.000E-03
5.500E-03 5.000E-03

6.500E-03 6.000E-03

7.500E-03 7.000E-03

8.500E-03 8.000E-03

9.500E-03 g. OOOE-03

1.050E-02 1.000E-02

1.150E-02 1.100E-02

1.250E-02 1.200E-02

1.325E-02 1.300E-02

1.375E-02 1.350E-02

1.425E-02 1.400E-02

1.475E-02 1.450E-02

1,525E-02 1,500E-02

1.575E-02 1.550E-02

1.625E-02 1.600E-02

1.675E-02 1.650E-02

1.725E-02 1.700E-02

1.775E-02 1.750E-02

1.825E-02 1.800E-02

1.875E-02 1.850E-02

1.925E-02 1.900E-02

1.975E-02 1.950E-02

2.050E-02 2.000E-02

2.JSOE-02 2.100E-02

2.250E-02 2.200E-02

2.350E-02 2.300E-02
PNTF20F3
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Table 6.5-II (cont).

33 1.000E-03 2.450E-02 2.400E-02

34 1.000E-03 2.550E-02 2.500E-02

35 1.000E-03 2.650E-02 2.600E-02

36 1.000E-03 2.750E-02 2.700E-02

37 1.000E-03 2.850E-02 2.800E-02

38 1.O00E-03 2.950E-02 2.900E-02

39 1.500E-03 3.100E-02 3.000E-02

40 2.000E-03 3.300E-02 3.200E-02

41 2.500E-03 3.550E-02 3.400E-02

42 3.000E-03 3.850E-02 3.700E-02

43 3.000E-03 4.150E-02 4.000E-02

44 3.000E-03 4.450E-02 4.300E-02

45 3.500E-03 4.800E-02 4.600E-02

46 4.000E-03 5.200E-02 5.000E-02

47 4.500E-03 5.650E-02 5.400E-02

48 5.000E-03 6.150E-02 5.900E-02

49 5.000E-03 6.650E-02 6.400E-02

50 5.000E-03 7.150E-02 6.900E-02

51 5.000E-03 7.650E-02 7.400E-02

52 5.000E-03 8.150E-02 7.900E-02

53 5.000E-03 8.650E-02 8.400E-02

54 5.000E-03 9.150E-02 8.900E-02

55 5.000E-03 9.650E-02 9.400E-02

56 5.500E-03 1.020E-01 9.900E-02

57 5.500E-03 1.075E-01 1.050E-01

58 5.000E-03 1.125E-01 1.100E-01

59 5.000E-03 1.175E-01 1.150E-01

60 5.000E-03 1.225E-01 1.200E-01

61 5.000E-03 1.275E-01 1.250E-01

62 5.000E-03 1.325E-01 1.300E-01

63 5.000E-03 1.375E-01 1.350E-01

64 5.000E-03 1.425E-01 1.400E-01

65 5.000E-03 1.475E-01 1.450E-01

66 2.500E-03 1.500E-01 1.500E-01

PART30F 3
TE92-1296

Predictions of mean and turbulence fields obtained from the k-e model are discussed first. Comparison of

the calculated mean axial and tangential (azimuthal) velocity profiles with the experimental data is pre-

sented in Figures 65-4 and 6.5-5. In this case, the k-e model fails to display the size and strength of the

experimental recirculation zone. The k-e model mimics the data trend reasonably well away from the

symmetry axis, however, the peaks were slightly underpredicted. The underprediction for a centefline

velocity stems from the incorrect representation of the turbulent diffusion process. The radial normal
stress is particularly important in the upstream region and, as a consequence, the isotropic viscosity hy-

pothesis is inadequate. The k-e model prediction of tangential velocity is in relatively good agreement

with data. The calculated profiles are in accordance with the data trend, although the maximum values

are slightly overpredicted. At the farthest downstream locations, the measured tangential profiles are
skewed toward the centerline, however, the k-e model fails to demonstrate such a behavior.

Comparison of the predicted turbulent kinetic energy, k, with the data is shown in Figure 6.5-6. The

agreement between the predicted and experimental values of k is not as good as that for the velocity. The

discrepancies near the centerline region can be attributed to the lack of well-predicted velocity field, inad-
equacy of the eddy viscosity hypothesis, and turbulent kinetic dissipation rate, e. The inlet distribution of

length scale has a significant effect on the e distribution in the upstream region where the diffusion terms

have a large effect on the mean velocity, it has no significant effect in the downstream region where the

diffusion effects are small. The k-e model tends to connect the dissipation rate too strongly to the local
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mean velocity field (Habib and Whitelaw, 1979) which is inappropriate since the dissipation occurs in the
finest scales of motion, and these do not reflect the local mean strain field. The predicted turbulent shear
stress, uv, profiles have been compared with the experimental data in Figure 6.5-7. The negative peak in
the shear stress profile corresponds to the shear layer between the two streams and the positive peak cor-
responds to the shear layer associated with the expansion. The agreement between the calculation and
the experimental data is good, although the peak values are not well predicted.

Having demonstrated the results of the k-¢ model, attention is now turned to the performance of the DSM
closure. Results of the mean velocity components obtained from the k-¢ model and the DSM are com-
pared with the experimental data (Figures 6.5-8 and 6.5-9). A wide disparity exists between the models'
prediction of the axial velocity near the centerline. It is evident that there are substantial differences in
the capability of the various models to promote or hinder fo_fion of the recirculation zone. It is clear
that the proper turbulence model is dependent on t_e location within the flow field. With regard to the
comparison between measurements and calculations, the predictions by DSM seem to be slightly better
for tangential velocity and the central recirculation zone, whereas those by k-¢ model are closer to exper-
imental data for maximum velocity. An examination of the calculated Reynolds stresses (Figures 6.5-10,
6.5-11, and 6.5-12) indicates that the relative performance of the model is dependent on the flow region.
The results show differences especially in the prediction of the centerline values in the developing region.

The reason can be attributed to the inlet dissipation rate distribution. Numerical study indicates that the
inlet ¢ profile is a very important factor in predicting the maximum values of mean and turbulence quan-
tifies. In general, the DSM closure maintains the correct shape of Reynolds stress profiles which are con-
sistent with the behavior of the mean velocity field.

Comparisons of calculated shear stresses with data are shown in Figures 6.5-13 and 6.5-14. In compari-
son with the data, the predicted values are in good agreement in the developed region, however, the loca-
tions of the maxima and minima have been shifted in the developing region of the flow field. In the outer
part of the recirculation zone, where the effect of entrainment is more pronounced, and near the axis of
symmetry, where the velocity gradient is negligible in the radial direction, the discrepancies between the
k-¢ model and DSM results are in fact diminished.
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Figure 6.5-1. Unconfined axisymmetric swirling coaxial jets geometry.
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Figure 6.5-4. Comparison of calculated mean axial velocity by k-e model with data (1 of 4).
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Figure 6.5-7. Comparison of predicted turbulent shear stress by k-e model with data (1 of 4).
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6.6 AIRBLAST INJECTOR

In this section, computations for the single-phase flow exhausted from the airblast injector are reported.

In this configuration, unconfined atomizer flow with coflow was directed vertically downward within a

457 mm 2 wire mesh screen. The entire test assembly was surrounded by a flexible plastic enclosure.

Data were obtained at six axial locations 25, 35, 50, 75, 150, and 300 mm from the exit plane of the injector.

The details of the injector geometry are shown in Figure 6.6-1.

The set of governing partial differential equations applied to swirling flow consists of equations for conti-

nuity, axial, radial, and azimuthal momenta, ¢, and six Reynolds stress components. The finite volume

approach (Patankar, 1980) is used to reduce the continuous equations to a set of coupled discrete equa-
tions. The numerical solutions are obtained using the flux-spline differencing scheme (Varejao, 1979).

A calculation procedure for elliptic flow requires boundary conditions on all boundaries of the computa-
tional domain. Four kinds of boundaries need consideration, namely inlet, axis of symmetry, outlet, and

entrainment. At the inlet boundary, which was located at the first measurement plane, the measured pro-

files of U, V, W, and the Reynolds stresses were prescribed. The k profile was obtained from the mea-

sured normal stresses (Figure 6.6-2). The kinetic energy distribution and the measured shear stress pro-

file were used to derive the inlet dissipation rate values (Equation 69).

At the axis of symmetry, the radial velocity, shear stresses, and the radial gradients of other variables are

set to zero. All streamwise gradients are presumed zero in the exit plane of the calculation domain.

Along the entrainment boundary, which was placed sufficiently far from the axis of symmetry, the quan-

tity rV was assumed constant. In addition, the axial velocity U was assumed zero, and k and _ were as-

signed arbitraily low values yielding an eddy viscosity, I_t = lo11.

The coupled equations and boundary conditions are solved numerically in a sequential manner using the

staggered grids for velocities and shear stresses. The main advantage of staggering the locations of
stresses is to enhance the numerical stability, a result of high coupling between the shear stresses and the

related mean strains. The iteration sequence employs the SIMPLER algorithm (Patankar, 1980) to handle

the coupling between the continuity and momentum equations. The algebraic equations are solved using

a line-by-line TDMA.

A nonuniform grid of 61 x 57 in the axial and radial directions is used for computations (Figure 6.6-3). A

finer grid spacing is assigned near the inlet, centerline, and in the shear layer. The tabulated axial (x) and

radial (r) grid points are presented in Table 6.6-I. The computational domain extends from the first exper-
imental location at x = 25 mm to 450 mm downstream of the jet exit. Since the measured flow does not

show any x dependence at x > 300 mm, the specified condition _ = 0 at the exit plane of calculation do-
main is reasonable.

The presented calculations have been made using the flux-spline differencing scheme and the calculated

results are essentially free of false diffusion. Therefore, the discrepancy between the experimental data
and the prediction can be related to either the improper inlet boundary conditions or the deficiency of the

turbulence model. As regards the inlet conditions, all quantities except the dissipation rate (_) were pre-
scribed from the measurement. The uncertainties in the derivation of the inlet c profile would adversely

affect the calculation at downstream locations.

Predictions of mean and turbulence fields obtained from the DSM are discussed first. Comparison of the

calculated mean axial velocity profiles with the experimental data is presented in Figure 6.6-4. In this

case, the DSM closure mimics the data trend reasonably well. The DSM closure prediction of axial veloc-

ity is in relatively good agreement with the data. The calculated profiles are in accordance with the data

trend, although the centerline velocity values are underpredicted. The differences between the model
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Table 6.6-I.

Airblast iniector flow grid defini0qn.

STREAHWISE C00R01NATES OF THE GRID

I DX

1 0 O00E+O0
2 7 750E-04
3 1 625E-03
6 2 050E-03

5 2 500E-03

6 2 700E-03

7 2 937E-03

8 3.313E-03
9 3.888E-03

10 4.587E-03

11 5.250£-03
12 5.775E-03
13 6.238E-03
14 6.712E-03
_5 7.o62E-o3
16 7.200E-03

17 7.250E-03
18 7.288E-03
19 7.300E-03
20 7.300E-03
2t 7.288E-03

22 7.275E-03
23 7.288E-03
24 7.300E-03
25 7.300E-03
26 7.300E-03

27 7.300E-03
28 7.300E-03

29 7.300E-03
30 7.300E-03
31 7.300E-03

32 7.300E-03
33 7.300E-03

34 7.300E-03
35 7 300E-03
36 7 300E-03
37 7 300E-03

38 7 300E-03
39 7 200E-03

40 7 200E-03
41 7 400E-03

42 7.400E-03
43 7.325E-03
44 7.325E-03
45 7.275E-03

46 7.275E-03

47 7.300E-03

X XU

O.O00E+O0

7.750E-04

2.400E-03
4.450E-03

6.950E-03

9.650E-03

1.259E-02

1.590E-02

1,979E-02

2,437E-02
2.962E-02

3.540E-02

4.164E-02

4.835E-02

5.541E-02
6.261E-02

6.986E-02

7.715E-02

8 445E-02
9 175E-02
9 904E-02
1 063E-01
1 136E-01

1 209E-01
1.282E-01

1.355E-01
1.428E-01
T.501E-01
1.574E-01
1.647E-01

1.720E-01
1.793E-01

1.866E-01

1.939E-01

2.012E-01

2.085E-01

2.158E-01
°2.231E-01

2.303E-01

2.375E-01

2.449E-01

2.523E-01

2.596E-01

2.669E-01

2.742E-01

2.815E-01

2,888E-01

0 O00E+O0
0 O00E+O0
1 550E-03
3 250E-0S

5 650E-03

8 250E-03
1 I05E-02
I 412E-02
1 768E-02

2 190E-02
2 685E-02

3.240E-02
3.840E-02
4.487E-02

5,182E_q2
5.900E-02
6.622E-02

7.350E-02
8.080E-02
8.810E-02

9.540E-02
1.027E-01

1.099E-0|

1.172E-01

1.245E-01
1.318E-01
1.391E-01
1.464E-01
1.537E-01
1.610E-01

1.683E-01
1.756E-01
1.829E-01

1 902E-01

1 975E-01

2 048E-01

2 121E-01
2 194E-01
2 267E-01

2 338E-01
2 411E-01
2.486E-01

2.559E-01

2.633E-01
2.706E-01

2.778E-01

2.851E-01

640



Table 6.6-1.

Airblast injector flow grid definition (cont).

48 7.450E-03 2.962E-01 2.925E-01

49 7.775E-03 3.040E-01 3.001E-01

50 7.975E-03 3.120E-01 3.080E-01

51 8.500E-03 3.205E-01 3,160E-01

52 9.500E-03 3.300E-01 3.250E-01

53 1.000E-02 3,400E-01 3.350E-01

54 1.000E-02 3.500E-01 3.450E-01

55 1.125E-02 3.612E-01 3.550E-01

56 i.375E-02 3.750E-01 3,675E-01

57 1.500E-02 3.900E-01 3.825E-01

58 1.500E-02 4.050E-01 3.975E-01

59 1.500E-02 4.200E-01 4.125E-01

60 1.500E-02 4.350E-01 4.275E-01

61 7.500E-03 4.425E-01 4.425E-01

TRANSVERS COORDINATES OF THE GRID

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

51

J DY Y YV

I O.O00E+O0

2 2.500E-04

3 7.500E-04

4 1.000E-03

5 1.000E-03

6 1.000E-03

7 i.000E-03

8 1.000E-03

1.000E-03

1.O00E-03

1.000E-03

1.000E-03

1,O00E-03

1.000E-03

1.O00E-03

1.O00E-03

1.000E-03

1.000E-03

1.000E-03

1.000E-03

1.000E-03

1 O00E-05

I O00E-03

I O00E-03

1 O00E-03

I O00E-03

I O00E-03

I O00E-03

1 O00E-03

1 O00E-03

1.000E-03

5.000E-06

7.500E-04

1.500E-05

2.500E-03

3.500E-03

4.500E-03

5.500E-03

6.500E-03

7.500E-03

8.500E-03

9.500E-03

1.050E-02

1.150E-02

1.250E-02

1 350E-02

1 450E-02

1 550E-02

1 650E-02

I 750E-02

1 850E-02

1 950E-02

2 050E-02

2 150E-02

2.250E-02

2.350E-02

2.450E-02

2.550E-02

2.650E-02

2.750E-02

2.850E-02

2.950E-02

O.O00E+O0

5.000E-04

1.000E-03

2 O00E-03

3 O00E-03

4 O00E-03

5 O00E-03

6 O00E-03

7 O00E-03

8 O00E-03

9 O00E-03

1000E-02

1 100E-02

1 200E-02

1.300E-02

1.400E-02

1.500E-02

1.600E-02

1.700E-02

1.800E-02

1.900E-02

2.000E-02

2.100E-02

2.200E-02

2.300E-02

2.400E-02

2.500E-02

2.600E-02

2.700E-02

2.800E-02

2.900E-02
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Table 6.6-I.

Airblast in!ector flow grid definition (cont).

32

33

34

35

36

37

38

39

4O

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

I . 000E-03

1 . 000E-03

I . 000E-03

I .500E-03

2.000E-03

2. 000E-03

2. 000E-03

2 000E-03

2 000E-03

2 000E-03

2 000E-03

2 000E-03

2 000E-03

2 000E-03

2 O00E-03

2 000E-03

2 000E-03

2 000E-03

2 000E-03

2 000E-03

2 000E-03

2 000E-03

2. 000E-03

2. 000E-03

l .500E-03

5. 000E-04

3.050E-02

3.150E-02

3.250E-02

3.400E-02

3.600E-02

3.flOOE-02

4.000E-02

4.200E-02

4.400E-02

4.600E-02

4.800E-02

5.000E-02

5.200E-02

5.400E-02

5.600E-02

5.800E-02

6.000E-02

6.200E-02

6.400E-02

6.600E-02

6. 800E-02

7.000E-02

7.200E-02

7.400E-02

7.550E-02

7.600E-02

3.000E-02

3.100E-02

3.200E-02

3.300E-02

3.500E-02

3.700E-02

3.900E-02

6.100E-02

4.300E-02

4.500E-02

4.700E-02

4 900E-02

5 100E-02

5 300E_02

5 500E-02

5 700E-02

5 900E-02

6 100E-02

6 300E-02

6 500E-02

6 700E-02

6 900E-02

7 100E-02

7 300E-02

7.500E-02

7.600E-02

and data become more severe in the developing region. The discrepancies are due to the insufficient dif-

fusion process caused by underprediction of radial normal stress component. At downstream, the calcu-
lated velocity field is in good agreement with data, however some minor discrepancies appear in that
zone.

Comparisons of the predicted turbulence intensities from the DSM closure are shown in Figures 6.6-5, 6.6-
6, and 6.6-7. The differences between the calculated and experimental results are significant in the case of
the normal stresses. The maximum axial turbulence intensity has been underpredicted in most of the
flow region, however, the trend was accurately predicted. The same trends are observed for all normal
stress components. The discrepancies between the model and data clearly indicate the lack of perfor-
mance of the pressure-strain model. One reason for this could be the lack of an appropriate model for the
rapid part, which was not considered here. The predicted turbulent shear stress from the DSM has been
compared with the experimental data in Figure 6.6-8. The positive peak in the shear stress profile corre-
sponds to the shear layer between the two streams. The agreement between the calculation and the ex-
perimental data is relatively good, although the peak values are not well predicted.

The k-e turbulence model was also applied for the same configuration to establish the suitability of the
model. The predicted mean axial velocity, turbulent kinetic energy, and shear profiles at the various axial
stations are shown in Figures 6.6-9, 6.6-10, and 6.6-11. The predictions of axial velocity profiles are in fair
agreement with the data. The velocity profiles are relatively fiat near the centerline. The maximum veloc-
ity occurs near the centerline which constantly decreases. The deceleration in axial velocity is due to the
pressure effects. The agreement between the predicted and experimental values of kinetic energy is as

good as that for the axial velocity. Even though the trends are similar, the predicted kinetic energy levels
are smaller than those derived from the measurements. As regards the turbulent shear stress, the calcu-
lated profiles only qualitatively agree with the experimental data. The predictions are not as good as
those calculated by the DSM closure.
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Figure 6.6-1. Airblast injector flow configuration.

643



0

0

l.... l .....

0

o

oo Oo
o

0 o

o

()

o

C3
L ....... | _ __

I

.&-.

_E

0
0

0

0

0000 O0

O

[ ..... _ [

0 o
o

0

o° __
o ' u_ _

o

_c___ C)

0

0

oo
0

o
o

o

0 o

0

o

0

o
0

o

0
L ..... [ .... L .... ' ....

O0

,_E oo0 0 °eq o
°

0

0

t ..... ]____ _[ ....

O0 o 0

0
0

o
0

0

0

0

0

0

0
0

0
0

0

I I

0

oq

E
t/3
O4

I1
X

0
e_
I

0"0

0
0

0
0

D

0

0

0

O'Og O'OL

o
O00

o o

o

8

o ._
6

e4

0 '6
- c5

,- &

0
0

644



D

645



II
x

0 o°°° O_
v

0 o
0 o

L.___l._ LL _ --. i

0
u'3

I/ 059o c

I ! . I k_____

u_
_ c

" j¢
x

[ _ I L __

E
E

U'3
c'4

II
X

[-- I I ____J____

0"017 0"0

o
1.5

J

0
1.5

0
",- ::D

_ : L

0

1.5
!

0
1.5

0
"" ::D

o

!

0

LO [
!

0"017

0
0

II
x

Q_ 0 o o 0 0 0 0 0 0

[..... u_ I I

0

LO

II
)<

J ] i

0"0_ 0"0

o

&

I-

0

15
(%1

0

0

1.13
I

0

1,5

0

0

!

8
£

8
I,,,,I

0

M6
z



II
x

._O0000C

000_ -"__

0

c5

0

II
x

O00(ID°O

o

J o°_ [ ........ x_____

- 0

0

II

I_____ ±.... [ ........ 0

-- 0

E o
E "

/e
II

x

[ .... 1..... • __ _k_

OOY 0"0_ 0"0

(_)u

v

0

0

0

v

o_

o_u'i

v

0

6

o'J
UJ
I-

0

0

II

x

1_ L 1

0
LO

II
x

0

__ -- 0

- 0

0

o o ° ° ° 9.-°°-0_ _- -c"-c_-J

I__ .J....... L_____J____

O'01z 0"0_ 0"0

0

0

0

¢5

647



u%

II
X

-_mnnO0000
00000_ o(

l L 1 , -- 0

o

0

II
x

000J[300 O(
000_._ _

t_____J ___ 1

o
o

v

o
6

Lt3

qO

t,q

'x' ol

J

E
E

¢'4

II
x

v

o
c5

-- o
,:5

/4
t I [ 1__

0"00"017

v

,.6

o
o

0
0

il
X

Q_O_O_O o 0 0 0__/3 Q_.

- 0
0
If,,-,

0
LO
.w,--

II
x

v

o
o

- o

v

o

8

uJ

m

8

E

8
o

It

',0

648



U3
r_

II

x

-o
c3

v

0
u')

II

x

o

o

J
I ..i I..... J

0
0

v

_5

o
o

-o

U3 0

II "_

x
,o° o

o
d

E
E

U'3
("4

II

X

I [ I_ J .....

o
d

v

o
o

0"0

0
0
_3

II

x

i _ t J_....

0

II

X

0"017 0"0

0
o

v

'o
d

- 0
0

v

o
d

I--

e_49



u")
m.

11

I, i |

o
II o op.,,%-._ "

o
O,

I i I d .....

Lm±__

0

o._

(D

T

0

0

0

T

0 0
o

X

- v
0

(D

J ........

E
U_

II
X

, ! i

I ........ • __ .L i

--C)

_-_ X

bO

0"0

0

T i

0"01:' O'OZ: 0"0

-O

15

o
e')

&
UJ

o E

O

u4
"T

O

o F

O

_5
"T,

8

I,#

O

650



x

651



u_

II
x

0

II
x

_o

o
d
o

o, E
0 v
I¢)

Y

o
6

o

1°o
0 v

v

o
o O

O
t¢3

II
x

o

-- 0

II
x

0

0,1

o
d
o

o. E

i.O

o. E
0 v

0
0

8

l

8

6
o

,,o

652



Lr)
p_

II

× _ oOO°___

0

II ooo

o
_ o

L .... l---- _- _----

o
u6

N"

q_
'O

O
u'i
T

o

o E

,6 Ig

o

T

o
ui

N"

o E

o

"2

O
O

II
x

J..... J .... J__----

o

(M

(M

F--

t"

{

° I
_6

01

,o g

d V
i>=

o
L4
"T,

O"0";' 0"0;_ 0"0 0"0t7 O'OE 0"0

653



REFERENCES

Bulzan, D. L., Shuen, J. S., and Faeth, G. M., 1987, "Particle Laden Swirling Free Jets: Measurements and
Predictions," AIAA Paper 87-0303, January.

Donaldson, C. du P., 1969, "A Computer Study of Boundary Layer Transition," A/AA Journal, Vol 7, p 271.
Fleckhaus, D., Hishida, D., and Maeda, M., 1987, "Effect of Laden Solid Particles on the Turbulent Flow

Structure of a Round Free Jet," Experiments in Fluids, Vol 5, pp 323-333.

Gibson, M. M. and Younis, A. B., 1986, "Calculation of Swirling Jets with a Reynolds Stress Closure," Phys
FI, Vo129, pp 38-48.

Habib, M. A. and Whitelaw, J. H., 1979, "Velocity Characteristics of a Confined Coaxial Jets," Journal of
Fluid Engng, Vol 101, pp 521-529.

Launder, B. E., 1989, "Second-Moment Closure and its Use in Modeling Turbulent Industrial Flow," Inter-
national Journal of Num Meth FI, Vol 9, pp 963-985.

Mostafa, A. A. and Elghobashi, S. E., 1985, "A Two-Equation Turbulence Model for Jet Flows Laden with

Vaporizing Droplets," International Journal of Multiphase Flows, Vol 11, No. 4, July-August, pp 515-533.
Mostafa, A. A. and Mongia, H. C., 1987, "On the Modeling of Turbulent Evaporating Sprays: Euierian

Versus Langrangian Approach," International Journal of Heat and Mass Transfer, Vol 30, December, pp
2583-2593. _ -

Mostafa, A. A. and Mongia, H. C., 1988, "On the Interaction of Particles and Turbulent Fluid Flows," Int. J.
Heat Mass Transfer, 3i (10), 2063, 2075_ .........

Naot, D., ,qhav_t, A., End Woifshtein, M.,_70, '_interacfions Between Components 0f the Turbulent Veloc-
ity Correlation Tensor," Israel J. Tech., 8, 259-269.

Nikjooy, M. and So, R. M. C., 1987, "On the Modeling of Non-Reactive and Reactive Turbulent Combustor
Flows," NASA-CR 4041.

Nikjooy, M. and Mongia, H. C., 1991, "A Second-Order Modeling Study of Confined Swirling Flow," In-

ternational Journal of Heat and Fluid Flow, Vol 12, No. 1, March, pp 12-19.

Patankar, S. V., i980, Numerical Heat Transfer and Fluid Flows, Hemisphere, New York.

Patankar, S. V., Karki, K. C., and Mongia, H. C., 1987, "Development and Evaluation of Improved Numer-
ical Schemes for Recirculating Flows," AIAA-87-006L ....

Shuen, J. S., Chen, L. D., and Faeth, G. M., 1983, "Predictions of the Structure of Turbulent Particle-Laden

Round Jets," AIAA Journal, Vo121, November, pp 1483-i484.
Spalding, D. B., 1978, "GENMIX: A General Computer Program for Two-Dimensional Parabolic Phenom-

ena," Pergamon, Oxford, England.

Sturgess, G. J., Syed, S. A., and McManus, K. R., 1983, "Importance of Inlet Boundary Conditions for Nu-
merical Simulation of Combustor Flows," AIAA, 83-1263.

Varejao, L. M. C., 1979, Flux-Spline Method for Heat, Mass, and Momentum Transfer, Ph.D. thesis, University
of Minnesota.

654



TABLE OF CONTENTS

Section

VII Concluding Remarks and Recommendations ................................................................ 655
7.1 Summary of the Present Work ........................................................................... 655
7.2 Recommendation ................................................................................................. 655





VII. CONCLUDING REMARKS AND RECOMMENDATIONS

7.1 SUMMARY OF THE PRESENT WORK

A combined experimental/analytical investigation was conducted to validate conventional and improved
turbulent and spray models. A systematic experimental program was conducted to collect benchmark
quality data for the mean and fluctuating quantities in the developing region of single-phase and particle-
laden flows with two mass loading ratios. Detailed velocity measurements were made using phase/Dop-
pler equipment. A detailed specification of the flow parameters in the upstream region was provided.
These are used as inlet conditions to start the computations. The test problems used ranges from simple
flows to more complex flows to encompass the range of complexities involved in combustion flows.
These are

• single round jet
• single annular jet
• single swirling annular jet
• coaxial jets
• coaxial jets with swirling any ular flow
• airblast injector

Closure of the Reynolds equation was achieved by three different levels of models: k-e, algebraic second-
moment (ASM), and differential second-moment (DSM) closure. Effects of pressure-strain correlation
models on these closure were also investigated. For turbulent particle-laden jet flow, the closure was af-
fected by extending constant-density single-phase turbulence models to the continuous (carrier) phase of
two-phase flow. The dispersed (discrete) phase was treated by both deterministic and stochastic-Lagran-
gian technique.

To reduce the effect of numerical (false) diffusion on the predicted results, the linear flux-spline scheme
was used to solve several two-dimensional flows. For a given number of grid points, the flux-spline
scheme produces results that are superior to those from the flower-order) power-law differencing
scheme. In addition, it has the potential of providing a grid independent solution without requiring an
excessive number of grid points.

Models employing transport equations for the individual turbulent stress components simulate the
turbulent processes more realistically and are, therefore, potentially more general compared to the
simpler models. It should be noted that the effectiveness of turbulence model predictions could be
obscured to some extent by competing factors: boundary conditions, oscillatory phenomena, and
numerical diffusion. A significant contribution from any of the aforementioned factors tends to
invalidate conclusions regarding the superiority or inferiority of a given turbulence model. The
turbulence model cannot compensate for inadequacy in this area.

7.2 RECOMMENDATION

Although some of the models described in this study, and in particular the k-e model, have been shown
to work well in many situations, there is much room for further development. The e-equation in its pre-
sent form appears not to be sufficiently universal and should be improved. As observed by many, this
equation is responsible for performance of most models. Ideas to use several length-scale equations for
different directions or different processes are promising and should he developed further.

The model assumptions for the pressure-strain correlation are also not very satisfactory and need im-

provement. Proposals for the behavior of 4)ij1 in homogeneous flows have only gone further than that of
Rotta's linear model by including further terms in a series expansion about the isotropic homogeneous
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state.However, optimization of the coefficients of the terms in the e_,pansion on the basis of available ex-
perimental data is a very difficult task indeed.

It seems unlikely that any serious proposal for _ijl will be made in the near future, and emphasis should

be placed on developing a better approximation for _ij2.

The derivation and validation of higher-order closure schemes holds the greatest potential for turbulence
model improvement for strongly swirling flows. Efforts to find a stable and higher order (order of terms
retained in an equivalent Taylor series expansion) differencing scheme thai can eliminate numerical dif-
fusion should continue. This is especially important in the case of two-phase and/or reacting flows be-

cause of the coupled nonlinearities which exist between the chemical and fluid mechanical processes.

An intensive submodel validation and development efforts, especially for the ASM closure, DSM closure,

and stochastic spray model in conjunction with probability distribution function (PDF) approach should
be continued.

Unfortunately, in many instances there is a lack of quality data relevant to gas turbine combustion. Many
modeling assumptions are similar to the constant-density, Reynolds .'tress closure. Therefore, further ex-
periments with more emphasis on turbulent scalar fluxes and densit_ correlations are needed to support
or to improve these assumptions.
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TURBULENT FLOW EQUATIONS FOR THE k-I_ MODEL

The transport equations presented in the previous sections reduce in axisymmetric coordinates (x, r) to

the following:

Continuity Equation

3
3 (rpU) + (rpV) = 0

ax ar
(AI)

x - Momentum Equation

[____ 3 ] aP
1 a (rpUU) +-- (rpVU) =-_+
r ar ax

I a. ,3UI O 3U)+____rr#T(3r_rT r_-(2r/_T) 3X
-zai k)3ax

(A2)

r- Momentum

[ oq ] aP v w 23 (rpUV) + -- (rpVV) =- _- 2PT _- + p -f-- +_- Or Or

I I 03 (3V 3U_-X [r"T _-+--o3 r
)]+ Oq (2rl.tTaV)]-32- °:)

Or J 3rr (ok)
(A3)

0 - Momentum

TI 3_3X(rpUW) + ar--(rpVW) = "PT-_--2-p __f___Tar__TVWW 3 (A4)

k - Transport Equation

] l[Oq (o_k ak, a (_ ak]]
+ -- (rpVk) = Pk" P£ + [r + #) +-- [r + It)

Or T _-_ ax ar ar J
(,45)

r -Transport Equation

aX &-r =CE, k k Cc2P-_-+T _-[r +l_)a-_-_]+ ar aX arr [r + p.}_ J (A6)
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Turbulence Model

ka
i..tt = C. p-_

ke
(3E

(A7)

(A8)

where

Pk = I_/2[(aU) 2

L ax
+(av)2 (yr)2]+(._u-gr + _r +-

av)2+(aw)2 a (_r)]"]_- ox +[r_ _I
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TURBULENT FLOW EQUATIONS FOR DSM CLOSURE

The modeled Reynolds stress transport equations presented in the tensor notation reduce in axisymmetric
coordinates (x, r) to the following equations.

Equation for u 2 :

r ar Or J e ' ax J

+_x k P--e c3rJ 01P_ (u2 - 2k)3

1" -- + (02 Pk" P_:)
ax

Equation for v 2 :

_--_-(PU _) + r-l-_-- (r --_I I -k u'2t °_v'21Or pV_)- Ckp U,axj

r(C kp_: , o_rJ=_xx P E[ o_r

+
pk _, a× "

k[_ a_ a_ +_ v2-w21

(BI)

(02 Pk - PC)

(B2)

PREC'}ED!NG PhGE BLANK NOT F_LMED
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Equation for w 2 :

(3-x _-(r p V w-2)- Ck P ¢ ' ax J

r ar J P_ ar -2

+ 12IrC k

r ar k
--a__ r

+_c_I_,_-,_ ;,V_rW'la--Z-+vw a---_-+

"Clp--E/w _- K)+(1-C2)p -2uw_-2_- 2w 2
K _ ax ar

Equation for uv:

_-_(p U u"Q-)+ ! _--_(r p V u-_) - a--_-I(Ck p Kr ar _. u-2)ab-g1
ax J

I °Ia k;_t_l=Txx -Er-- - -- r {O k p p Ok, uQ u-_
r ar _ ' ar J

Ia k - v--_ + p u--_W
+1_ rr rCk P_- _, aX -r-

-T -_-x +vw a--T-+w2 -Clp_Uv

+(_ c_)p[_v _v _av _u1..... +uw_-uv--_;_
ax _r ax ar J

. C_ T

,2 (C2 Pk- pc)
(B3)

(B4)



Equation for vw:

° ¸ I(--- -_ ,-3 a_Wax(pU_)+ (roVe) a CkP_kku
_x E

r(C_ _l _ C _v-_
rar _ ' arJ =ax kP_ ar

+
lO[r Ck p k (_-w-v 2r arL _ r"w2

+

-c, _,_-_+(_c_)_,I _w _w __u ]_ _ _+vw__,_r ._ -av
L

Equation for uw :

a_- {P U "a"W')+ r--l-_- (r P V Ew ) - CkP C /--_"-X J

r(Ck P _)c3_-_" c3 C __aS-'W"r _ --_-, =_-.. k P uv_+ u--_
ar

+
7- rCkP _- _-9-_+v--_

Ox

+ 1Ck p OW +vw--- w2
c3r

-C1 p _- -U-_
+ (1 " C2) P t" u-2 (_W -U--qaW" v-WaU -_r 1ax Or _-r +-u-'w

(_)

(116)
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